
Introduction	to	R		
for	flow	cytometry	data	analysis	

Day	2	

With	slides	from	Diana	Marek,	Thomas	Junier,	Wandrille	Duchemin,	Leonore	Wigger	

João	Lourenço,	Tania	Wyss	&	Nadine	Fournier	
Translational	Data	Science	–	Facility	
SIB	Swiss	Institute	of	Bioinformatics	

Starting	with	flow	cytometry	data	in	R	(import	and	

explore	the	data)	

Building	graphics	in	R	

Day	2	

06

07

Examples and exercises are integrated in the
chapters

Outline

Taking	Advantage	of	R	For	Your	Work	

15

Data	
acquisition	

Planning	and	
Preparation	

Data	analysis	in	R	
	
	
	
	
	
	
	
	
	
	
	
	
	

Preprocessing	
(formatting,	
cleaning,	QC)	

Data	Representation	(plots,	tables)	

Analysis	
(clustering,	
phenotype	
discovery,	
statistics)	

Exploration	

Communicate	
(reports)	

Import		

Export	

Results	

Manual	
analysis		

(QC,	gating)	

Taking	Advantage	of	R	For	Your	Work	

15

Data	
acquisition	

Planning	and	
Preparation	

Data	analysis	in	R	
	
	
	
	
	
	
	
	
	
	
	
	
	

Preprocessing	
(formatting,	
cleaning,	QC)	

Data	Representation	(plots,	tables)	

Analysis	
(clustering,	
phenotype	
discovery,	
statistics)	

Exploration	

Communicate	
(reports)	

Import		

Export	

Results	

Manual	
analysis		

(QC,	gating)	

Building	graphics	in	R	06

R	is	powerful	for	plotting	graphs	and	figures.	It	provides	several		
plotting	systems:	
•  base	
•  ggplot2	

widely	used,	comes	with	basic	R	installation	
widely	used,	based	on	the	Grammar	of	Graphics	

	 	 	http://vita.had.co.nz/papers/layered-grammar.pdf	

lattice 	mainly	used	for	specialized	needs,	e.g.	3D	plots	

	
They	have	very	different	syntaxes,	cannot	be	mixed,	and	need		
to	be	learned	separately.	This	course	introduces	the	R	base		
plotting	system.	

R	graphics	

6

Plots	are	built	up	step	by	step	with	multiple	function	calls.	

•  High-level	graphics	functions:	
•  Draw	a	new	plot.	Tailor	its	appearance	with	optional	arguments.	

•  Low-level	graphics	functions:	
•  Add	graphical	elements	to	an	existing	plot,	piece	by	piece.	

R	base	plotting	system	

7

•  The	generic	function	is	plot(),	which	plots	a	variable	y	against	a	variable	x.	
•  Takes	the	argument	type	to	indicate	the	type	of	plot	("l"	for	lines,	"p"	for		

points,	"b"	for	both,	etc.).	The	default	is	points.	
	
>  x <- 1:100
>  y <- log(x) + (x/100)^5
>  plot(x,y) # equivalent to plot(x, y, type="p")

Plotting	-	the	basics	

0 20 40 60 80 100

0

8

1
2

4
5

x

y 3

•  Every	time	the	plot()	function	is	called,	a	new	plot	is	created.	
•  In	order	to	add	more	graphical	elements	to	an	already	existing	plot,	low-level		

plotting	commands	can	be	used,	such	as:	
•  points()	to	add	points	to	an	existing	plot	
•  lines()	to	add	a	line	to	an	existing	plot	

The	type	argument	can	also	be	provided	to	those	functions	(e.g.,	"l"	for	lines,		
"p"	for	points	and	"b"	for	both).	Default	for	points():	"p",	default	for	lines():	"l".	

	

>x <- seq(0,100, by=10)

>y <- log(x) + (x/100)^5

>plot(x,y)

>lines(x,y+1)

>points(x,y-1, type="b")

Adding	elements	to	a	plot	

0 20 40 60 80

2.
5

4.
5

x

9

y
3.

5

•  plot(),	points()	and	lines()	all	take	customizing	arguments,		
including:	
•  col	indicating	the	colour	
•  lwd	indicating	the	line	width	
•  lty	indicating	the	line	type	
•  pch	indicating	the	plotting	character	(symbol)	

	
>plot(x, y, type="l", col="red",

lwd=7)

>lines(x, y+1, col="blue",

lty="dashed")

>points(x, y-1, type="b",

pch=19)

Customizing	plots	–	Part	1	

10

R	line	types,	to	use	with	lty	

(Do	help(par)	and	search	for	“lty”)	

11

R	plotting	characters,	to	use	with	pch	

(Do	help(points)	and	scroll	2-3	screens)	

12

R	color	names	

www.nceas.ucsb.edu/~frazier/RSpatialGuides/colorPaletteCheatsheet.pdf	
13

•  R	has	657	built-in	color	names	
•  Can	be	used	in	plotting	functions	
•  Chart	shows	a	subset	

• 	 colors()	will	output	a	list		
of	all	color	names	

See	R	color	cheat	sheet	for	the	full	color	chart		
and	other	ways	to	define	colors	
https://r-charts.com/colors/	
	

15

•  The	plot()	command	takes	further	arguments	to	customize	the		
plotting	area:	
•  xlim	and	ylim	to	set	the	limits	on	the	x-	and	y-axis,	respectively	
•  xlab	and	ylab	to	set	the	labels	for	the	x-	and	y-axis,	respectively	
• main	to	set	a	title	

>  x <- seq(0, 100, length.out=10)
>  y <- log(x) + (x/100)^5
>  plot(x,y, type="l", col="red", ylim=c(1,7),

xlab="The variable x", main ="x vs. y")
>  lines(x, y+1, lwd=3,lty="dashed", col="blue")
>  points(x, y-1, type="b", pch=15)

Customizing	plots	–	Part	2	

0 20 40 60 80 100

x vs. y

The variable x

y
1

2
3

4
5

6
7

•  The	legend()	command	can	be	used	to	add	legends	to	plots:	
•  x	,	y	to	set	the	numeric	coordinates	for	positioning	the	legend.	

•  x	can	be	used	by	itself	with	a	keyword	for	legend	position:	"bottomright",		
"bottom",	"bottomleft",	"left",	"topleft",	"top",	"topright",	"right",	"center"	

•  legend	to	set	the	text	to	appear	in	the	legend	
•  col	to	set	the	colours	of	points	or	lines	
•  lty	and	lwd	to	set	the	line	types	and	widths	for	lines	appearing	in	the	legend	
•  pch	to	set	the	plotting	symbols	appearing	in	the	legend	
•  bty	for	box	type	around	the	legend	("o"	for	box,	"n"	for	no	box)	
•  bg	for	background	color	

> legend(x="bottomright",
legend=c("red line",

"blue line", "black line"),

lty=c(1,2,1), pch=c(NA,NA,19),

col=c("red", "blue", "black"),

bg="gray90")

Customizing	plots	–	Part	3	

0 20 40 60 80 100

2.
5

3.
0

3.
5

4.
5

5.
0

5.
5

x

15

y 4.
0

red line

blue line

black line

R	contains	many	practice	data	sets	(data	frames),	great	for	trying	out		
plotting	functions.	
	
Display	names	of	available	data	sets	
>data() #data sets in standard packages

>data(package = .packages(all.available = TRUE)) #data sets
in all installed packages

Load	and	use	a	data	set	
>data(iris)

>?iris

>head(iris)

#load the iris data (overwrite existing variable)

#get information about the iris data

#display top few lines of the iris data frame
Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

How	to	get	data	for	practicing	and	playing	–	Part	1	

16

R	can	easily	simulate	data	drawn	from	a	given	distribution.	The		
function	rnorm()	generates	normally	distributed	data.	
Example:	
>rnorm(10) #numeric vector with 10 random

values #drawn from normal
distribution, #mean=0, sd=1
(function defaults)

[1] 1.1053564 0.7937635 0.2743762 0.3574477 -0.7677099
[2] 0.5838973 0.6616164 0.1203090 -0.4060265 0.2778585

How	to	get	data	for	practicing	and	playing	–	Part	2	

sd:	standard	deviation	
17

R	can	easily	simulate	data	drawn	from	a	given	distribution.	The		
function	rnorm()	generates	normally	distributed	data.	
Example:	
>rnorm(10) #numeric vector with 10 values

#drawn from normal distribution,
#mean=0, sd=1 (function defaults)

[1] 1.1053564 0.7937635 0.2743762 0.3574477 -0.7677099
[2] 0.5838973 0.6616164 0.1203090 -0.4060265 0.2778585

How	to	get	data	for	practicing	and	playing	–	Part	2	

sd:	standard	deviation	
18

If	you	want	data	from	other	distributions	than	normal:		
rpois()	for	poisson,	rbinom()	for	binomial	(see	R	help)	

>rnorm(10, mean=10, sd=2) #customized mean and sd
[1] 6.253392 9.527140 9.398857 11.932284 11.472909
[2] 10.714245 7.656026 11.302829 9.332930 10.264157

•  The	function	hist()	produces	a	histogram,	which	counts	the		
number	of	observations	that	fall	into	different	ranges	(bins)	

•  Rough	visual	representation	of	the	distribution	of	the	data.	
•  x	 vector	of	data	values	for	which	the	histogram	will	be	constructed	
•  breaks	either	a	vector	indicating	breakpoints	between	histogram	bins,	or	a		
single	number	for	the	number	of	bins	(used	as	suggestion)	

•  freq	logical.	If	TRUE,	cell	height	represents	counts	per	bin.	If	FALSE,	cell	height		
is	the	fraction	of	values	that	fall	into	each	bin	(probability	mass).	

>  x <- rnorm(10000)
>  hist(x, breaks=20,
freq=FALSE,

main="Hist",

col="pink")

The	hist()	function	

19

•  To	add	a	smooth	line	to	a	histogram,	use	density(),	which		
computes	estimates	of	the	probability	density	(kernel	density		
estimates).	

•  This	works	as	a	complementary	representation	of	the	histogram		
only	when	freq	=	FALSE	

•  The	line	produced	by	density()	often	reflects	the	distribution		
better	than	a	histogram.	

•  Use	lines()	to	plot	the	result	as	a	line	on	top	of	the	histogram.	
	
>  x <- rnorm(10000)
>  hist(x, freq=FALSE,
main="Hist",

col ="pink")

>  lines(density(x),
col="blue", lwd=3)

The	hist()	and	density()	functions	

20

The	boxplot()	function	

Median	

Convenient	way	of	depicting	the	spread	of	numerical	data	
Box:	Interquartile	range	(IQR),	contains	50%	of	points	
Whiskers:	Extend	from	box,	indicate	variability	outside	upper	and	lower	quartiles		
Outliers:	May	be	plotted	as	individual	points	

Example:	
Melanoma	thickness	(mm)		
in	205	patients	

Outliers	

21

The	boxplot()	function	

Median	

Convenient	way	of	depicting	the	spread	of	numerical	data	
Box:	Interquartile	range	(IQR),	contains	50%	of	points	
Whiskers:	Extend	from	box,	indicate	variability	outside	upper	and	lower	quartiles		
Outliers:	May	be	plotted	as	individual	points	

Example:	
Melanoma	thickness	(mm)		
in	205	patients	

Outliers	

Box:	Interquartile	range	(Q1	to	Q3)	

22

Whisker:	covers	all	points	<	Q3	+	1.5	*	IQR	

Whisker:	covers	all	points	>	Q1	-	1.5	*	IQR	

patients in
>library(MASS)
>data(Melanoma) #Data from MASS package. 205
Denmark with melanoma

>head(Melanoma) #look inside the data set
time status sex age year thickness ulcer

1 10 3 1 76 1972 6.76 1
2 30 3 1 56 1968 0.65 0
3 35 2 1 41 1977 1.34 0
4 99 3 0 71 1968 2.90 0
5 185 1 1 52 1965 12.08 1
6 204 1 1 28 1971 4.84 1

>boxplot(Melanoma$thickness,
ylab="Tumour thickness (mm)",
col="white")

Boxplot:	data	and	plotting	code	

23

•  Make	separate	boxplots	for	subgroups	of	data	
•  Plot	individual	data	points	as	an	overlay	of	the	boxplots.	

More	boxplots	

status:	1	died	from	melanoma,	2	alive,	3	dead	from	other	causes	
24

More	boxplots:	data	preparation	

#check if the grouping variable is a factor (it is not!)
>str(Melanoma)
'data.frame': 205 obs.
$ time : int 10

of 10 variables:
30 35 99 185 204 210 232 232 279 ...

$ status : int 3 3 2 3 1 1 1 3 1 1 ...
$ sex : int 1 1 1 0 1 1 1 0 1 0 ...
$ age : int 76 56 41 71 52 28 77 60 49 68 ...

$ year : int 1972 1968 1977 1968 1965 1971 1972 1974
$ thickness: num 6.76 0.65 1.34 2.9 12.08 ...
$ ulcer : int 1 0 0 0 1 1 1 1 1 1

#coerce the grouping variable to factor
>Melanoma$status <- factor(Melanoma$status)

25

More	boxplots:	plotting	code	

26

Method	1:	Data	subsets	
>boxplot(Melanoma$thickness[Melanoma$status=="1"],

Melanoma$thickness[Melanoma$status=="2"],
Melanoma$thickness[Melanoma$status=="3"],

status", main="Thickness of melanoma per patient
xlab="status", ylab="Tumour thickness",
names=c("1","2","3"))

>points(Melanoma$status, Melanoma$thickness,
col="blue",pch=19) #adds the actual data points to the plot

status",

Method	2:	Formulas	
>boxplot(thickness ~ status, data=Melanoma,

main="Thickness of melanoma per patient
xlab="status", ylab="Tumour thickness")

>points(thickness ~ status, data=Melanoma,
col="blue", pch=19) #adds the actual data points to the plot

abline()	adds	one	or	more	straight	lines	through	the	current	plot	–		
vertical,	horizontal	or	sloped.	
	
Useful	for	

•  showing	boundaries	and	cutoffs	
•  fitting	straight	trend	lines	through	the	data	(cf.	lm())	

Arguments:	
•  abline(v=c(…)):
•  abline(h=c(…)):
•  abline(a= ,b=):
•  abline(reg=lm(…)):

add	vertical	line(s)	at	the	given	x	value(s)		
add	horizontal	line(s)	at	the	given	y	value(s)	
add	an	affine	line	with	intercept	a	and	slope	b		
add	a	trend	line	from	a	linear	regression		
equivalent	to	abline(lm(…))	

The	abline()	function	

27

Example	1:	Horizontal	and	vertical	lines	

May-Sept. 1973 >  data(airquality) # Daily measurements, New York,
>  plot(airquality$Wind, airquality$Ozone, pch=20,

xlab= "Wind (mph)", ylab="Ozone (ppb)")

>  abline(h=60, col="red", lty="dashed")
>  abline(v=seq(3,21,3), col="grey", lty="dotdash")

>  legend("topright", "Maximum allowable ozone concentration",
col="red", lty="dashed")

28

Example	2:	Fitting	a	trend	line	

>  plot(airquality$Wind, airquality$Ozone, pch=20,
xlab= "Wind (mph)", ylab="Ozone (ppb)")

>  abline(lm(airquality$Ozone ~ airquality$Wind),
col=2, lwd=2)

>  legend("topright", legend= c("measures","fitted line"),
pch= c(20, NA), lty = c(0, 1), lwd=c(NA, 2),
col = c(1, 2), bg = "gray90")

29

•  If	x	is	a	matrix	or	a	data	frame,	pairs()	draws	all	possible	bivariate		
plots	between	the	columns	of	x.	

>  data(iris)
>  pairs(iris[,1:4], main="Edgar Anderson's Iris Data",

pch=21, bg=c("red", "green3", "blue")[iris$Species])

Draftsman's	or	Pairs	Scatter	Plots	

bg:	
color	fill	of	circles	with	black	outline	

Colors:	
setosa	in	red	
versicolor	in	green	
virginica	in	blue	
	
Why?	
Each	of	the	3	listed	colors	gets	attributed	
to	one	of	the	factors	following	the	order	
of	the	levels	

30

Excursus:	Coloring	data	points	in	the	iris	data	

The	coloring	strategy	in	the	iris	draftman's	plot	involves	subsetting	and	coercion:	

bg=c("red", "green3", "blue")[iris$Species]

is	equivalent	to	
	
bg=c("red", "green3", "blue")[as.numeric(iris$Species)]

is	equivalent	to	

bg=c("red","green3","blue")[c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1

,1,1,1,1,2,

2,3,3,3,3,3

,3,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)]

Inside	the	square	brackets	[]	,	the	factor	is	automatically	coerced	to	a	numeric	

34

Import	the	clinical	data	from	the	file	clinical_data_mod.csv.	This	files	contains	the	same	data		
as	clinical_data.csv	and	in	addition,	one	more	column.	
1)  Run	str()	to	check	your	data	frame:	did	it	load	correctly?	

2)  Convert	gender	and	response_to_treatment	to	factor	variables.	

3)  Plot	a	histogram	of	patient	weight	and	customize	it	with	colours,	labels,	title.		

4)	Make	a	scatter	plot	of	height	against	patient	weights	using	the	function	plot().		
						Function	arguments:	

- use	solid	circles	as	plotting	symbol	
- add	a	title	
- customize	the	axis	labels	(“Weight	[kg]”,	“Height	[m]”)	
- color	the	points	by	gender.	

Add	a	legend	for	the	gender.	Fit	a	trend	line	using	the	function	abline().	

5)	Create	a	new	column	called	“BMI”	and	compute	the	BMI	of	patients	from	their	weight	
and	height		

6)	Make	boxplots	of	BMI	from	patients	with	different	responses	to	treatment.	Customize	
with	title,	labels,	colors.	Add	points	to	the	boxplots	to	show	the	individual	values.	

7)	Optional:	Repeat	6	with	stage,	instead	of	response	to	treatment.	Hint:	what	kind	of	
variable	is	stage?	

Let’s	practice	-	7	

•  The	function	par()	allows	to	change	the	default	values	of	many		
plotting	parameters.	All	future	calls	to	graphics	functions	will	be		
affected.	

•  Example	1:	set	plotting	colors	and	symbols	
>par(col="red", pch=15)

•  Example	2:	set	margin	widths	for	subsequent	plots	
• mar	sets	plot	margins	in	number	of	lines	
•  use	vectors	of	4	values	(c(0,1,1,2))	for	the	bottom,	left,	top,	and	right	margins	

	
>par(mar=c(5.1,4.1,4.1,2.1)) #set margins

Permanent	Graphic	Changes	(I)	

45
https://r-charts.com/base-r/margins/	
	

Normal	Margins	(bottom,	left,	top	right):	
>par(mar=c(5.1,4.1,4.1,2.1))
>plot(1:10)

Wide	Margins	(bottom,	left,	top,	right):	
>par(mar=c(8.1,8.1,8.1,8.1))
>plot(1:10)

46

• Example	3:	Generate	multi-panel	figures	using	par()	
• mfrow	(or	mfcol):	A	vector	of	the	form	c(nr,	nc).	Subsequent	figures	will	be		
drawn	in	an	nr-by-nc	array	by	rows	(or	columns,	respectively).	

	
>  par(mfrow=c(1,2),col="firebrick", pch=19) #1x2 plot array

>  x <- seq(-100, 100, 0.1)
>  plot(x, y=x^2, ylim = c(-10000,10000), main="quadratic")
>  plot(x, y=x^3, ylim = c(-10000,10000), main="cubic")

Permanent	Graphic	Changes	(II)	

47

Resetting	par()	
	
•  par()	is	automatically	reset	to	defaults	when	you:	

•  Restart	R	or	close/switch	Rstudio	projects	
•  Run	dev.off(),	which	closes	the	most	recent	plot/plotting	device	
•  Run	graphics.off(),	which	closes	plots/plotting	devices	
•  In	RStudio,	clear	all	plots	using	the	broom	icon	

Current	settings	of	par()	

48

•  Calling	par()	without	parameters	displays	current	settings	
•  If	you	changed	nothing,	all	parameters	are	at	default	values	

•  By	default,	R	plots	all	graphics	to	the	screen	(i.e	Plots	window).	
•  R	offers	functions	to	export	graphics	to	many	formats	(pdf,	postscript,	bmp,		

jpeg,	png,	tiff).	The	basic	concept	is	to	redirect	the	graphics	output	to	a		
different	“device”.	

•  Use	pdf()	to	start	redirection	to	a	.pdf	file,	png()	for	a	.png	file,	etc.	
•  Use	dev.off()	to	close	the	redirection.	
	

pdf(file="quadratic_cubic.pdf", width=7, height=4,
paper="a4")

par(mfrow=c(1,2),col="firebrick", pch=19)
100, 0.1)
ylim=c(-10000,10000), main="quadratic")
ylim=c(-10000,10000), main="cubic")

x <- seq(-100,
plot(x, y=x^2,
plot(x, y=x^3,
dev.off()

•  Alternatively	you	can	use	the	RStudio	interface:	
•  Plots	>	Export	>	Save	as	Image	(PNG,JPEG,TIFF,BMP,…)	
•  Plots	>	Save	as	PDF.	

Saving	figures	to	files	

49

•  Use	correct	file	extension:	
•  postscript(file="a_name.ps",	…)	
•  pdf(file="…pdf",	…)	
•  jpeg(file="	…jpg",	…)	
•  png(file="	….png",	…)	

•  Each	graphics	device	has	a	specific	set	of	arguments	that	dictate		
characteristics	of	the	output	file	:	height=,	width=,	horizontal=,	res=,		
paper=,	pointsize=	

•  For	png,	jpeg,	tiff	(raster	formats),	the	width	and	height	of	the	graphics	are		
given	in	pixels.	

•  For	pdf	and	postscript	(vector	formats),	the	width	and	height	of	the	graphics		
region	are	given	in	inches.	Default	values	are	7.	(Tip:	A4	=	8.3"	x	11.7“;	set	the		
width	and	height	a	little	smaller	for	printing	to	A4	size).	

•  Only	pdf()	and	postscript	have	an	argument	"paper".	This	can	be	set	to		
common	paper	formats	(paper="a4"	for	A4	in	portrait	orientation,		
paper="a4r"	for	A4	in	landscape	orientation).	

Arguments	to	graphics	export	functions	

50

Choosing	an	image	file	format	

52

Raster	graphics	(png,	tiff,	jpeg):	
•  file	sizes	depend	on	the	image	size	(number	of	pixels)	
•  once	created,	stretching	the	image	leads	to	poor	quality	

Vector	graphics	(pdf,	ps,	eps,	svg):	
•  file	sizes	depend	on	the	number	of	drawing	actions		

(e.g.	number	of	points,	lines,...)	
•  all	elements	can	be	scaled	as	desired	

Embedding	image	files	in	MS	Office	documents	(Word,	PowerPoint):	
•  In	Windows,	png	and	tiff	work	best,	pdf	can	get	blurry.	
•  In	macOS,	pdf	works	well.	
•  Can	also	export	plot	from	RStudio	to	clipboard,	then	paste.	

Publication-quality	figures:	
•  Vector	graphics	(pdf,	eps)	tend	to	be	easier	to	adapt	as	they	can	be	resized	

	
File	size	tip:	when	a	large	number	of	points	is	plotted,	pdfs	can	become	large	in		
file	size	and	slow	to	display.	When	this	is	an	issue,	consider	png.	

Let’s	practice	–	8	

1) Make	a	multi-panel	figure	with	the	four	graphics	(3,	4,	6	and	7	from	
previous		exercise)	on	one	page,	exporting	the	figure	to	a	pdf	file	with	
paper	size	A4.		Set	width	and	height	arguments	in	the	call	to	pdf()	to	make	it	
look	nice.	

	

2)	Optional:	Export	the	histogram	(3	from	previous	exercise)	to	a	png	file.	Set		
width	and	height	arguments	in	the	call	to	png()	to	make	it	look	nice.	

ggplot2	
•  The	syntax	(grammar)	is	very	different	from	base	R	plotting	functions.	
•  It	builds	a	plot	by	adding	layers	of	functions	using	the	+	sign	
•  The	basic	ggplot2	functions	specify	the	dataset,	the	x,y	
		coordinates,	and	the	type	of	plot:	

ggplot(dataset, aes(x, y)) +

 geom_type()

	
Additional	layers	for	full	customizations		
are	then	added:	
ggplot(dataset, aes(x, y, color=fact)) +

 geom_type() +

 additional_layers()

	
	
	
	

ggplot2	cheatsheet	https://rstudio.github.io/cheatsheets/data-visualization.pdf	

ggplot2	
•  Multi-panel	figures:	save	the	ggplot	to	an	object,	then	display	
	
p1 <- ggplot(dataset, aes(x, y, color=fact)) +

 geom_type() +

 additional_layers()

	
p2 <- ggplot(dataset, aes(x, y, color=fact)) +

 geom_type() +

 additional_layers()

install.packages("cowplot")

library(cowplot)

plot_grid(p1, p2, nrow=1)

	

	
	
	

p1	 p2	

•  Introduction	to	high-level	and	low-level	plotting	functions	in	R	
•  plot(),	lines(),	points(),	hist(),	barplot(),	boxplot()	…	

•  Customization	of	plotting	functions	
•  Colours,	line	types,	line	widths,	plotting	characters…	
•  Titles,	labels,	legend…	

•  Permanent	graphic	changes	
•  Exporting	graphics	in	different	formats	

In	a	nutshell	

54

A	nice	resource	you	may	want	to	use	as	inspiration	and	reference	for	plotting:		
https://r-graph-gallery.com/index.html	

Taking	Advantage	of	R	For	Your	Work	

15

Data	
acquisition	

Planning	and	
Preparation	

Data	analysis	in	R	
	
	
	
	
	
	
	
	
	
	
	
	
	

Preprocessing	
(formating,	
cleaning,	QC)	

Data	Representation	(plots,	tables)	

Analysis	
(clustering,	
phenotype	
discovery,	

statistic	analyses)	

Exploration	

Communicate	
(reports)	

Import		

Export	

Results	

Manual	
analysis		

(QC,	gatting)	

Taking	Advantage	of	R	For	Your	Work	

15

Data	
acquisition	

Planning	and	
Preparation	

Data	analysis	in	R	
	
	
	
	
	
	
	
	
	
	
	
	
	

Preprocessing	
(formating,	
cleaning,	QC)	

Data	Representation	(plots,	tables)	

Analysis	
(clustering,	
phenotype	
discovery,	

statistic	analyses)	

Exploration	

Communicate	
(reports)	

Import		

Export	

Results	

Manual	
analysis		

(QC,	gatting)	

