
Introduction	to	R		
for	flow	cytometry	data	analysis	

Day	1	

With	slides	from	Diana	Marek,	Thomas	Junier,	Wandrille	Duchemin,	Leonore	Wigger	

João	Lourenço,	Tania	Wyss	&	Nadine	Fournier	
Translational	Data	Science	–	Facility	
SIB	Swiss	Institute	of	Bioinformatics	

Importing,	formatting	and	exporting	data	with	R	
Exercises	
(15:50	–	16:50)	
	
16:50		-		17:00				Feedback	and	end	of	day	
	

Day	1	(afternoon)	

Outline & Schedule

04

Getting	started	with	R	syntax	and	objects	
Exercises	
(13:00	–	15:30)	
15:30	-15:50		Coffee	break	
	
	

03

04

Getting	started	with	R	syntax	and	objects	03

•  Variables	we	have	seen	so	far	can	hold	one	value.	This	value	can	be	of		
different	types.	Use	mode()	to	display	it.	

The	three	most	common	data	types:	

•  Numeric:	
•  A	number	stored	with	decimal	point.	(Decimal	point	need	not	be	displayed).		
Examples:	0,	5,	55.2,	-11.111	

-  in	some	contexts	this	data	type	is	labeled	"double“	
-  integers,	stored	without	decimal	points,	exist	but	are	rarely	used.	

•  Character:	
A	text	sequence.	Must	be	enclosed	in	quotes	"	".	(Single	quotes	work,	too).		
Examples:	"1a++",	"Hello	World",	"s",	"99"	

	
•  Logical:	
TRUE	or	FALSE	(This	is	binary.	No	other	possible	values).	

R	Basic	Data	Types	

54

Syntax	refers	to	the	spelling	and	"grammar"	rules	of	a	programming	language.	
	
A	few	important	points	:	
•  Case	sensitive:	R	differentiates	between	small	letters	and	capitals.	

•  Statements	can	be	separated	by	a	newline	or	by	a	semicolon	";"	(for	better		
readability,	a	newline	after	each	statement	is	almost	always	preferable)	

•  Long	statements	can	be	written	on	multiple	lines	

•  R	has	no	strict	rules	about	including	or	omitting	blank	spaces	between		
elements,	as	long	as	the	code	is	unambiguous.	Make	your	spacing	consistent		
and	think	of	readability.	

	
The	#	 character	stands	for	comments.	Anything	after	a	#	on	a	line	is	ignored	by	R.		
Write	comments	into	your	code	to	explain	what	it	does.	

R	Syntax	

55

An	object	is	a	storage	space	that	takes	(or	contains)	a	value,	a	data		
structure	or	a	section	of	code.	
	
•  All	elements	of	an	R	statement	can	be	thought	of	as	objects.		
Variables	are	objects	containing	data.	

Functions	are	objects	containing	code.	

R	Objects	

56

Object	names	can	consist	of	letters,	numbers,	dots	and	underscores.	
	

•  Cannot	start	with	a	number.	
•  Cannot	contain	operators	(including	hyphen).	
•  Cannot	start	with	underscore	
•  Best	to	start	with	letter	

	
Valid	examples:	

x		
mydata1	
mydata.normalized		
n_times	

Allowed	Names	for	Objects	

57

We	can	use	either	the	symbol	"<-"	or	"="	to	assign	values	to	objects.	Stick	to	one		
for	consistency.	

10 to it

•  Create	an	object:	
>  x <- 10 # Create object x, assign the

value # NB: This does the same as x = 10

•  Change	the	value	of	an	existing	object:	
>  x <- 25 # x has the value 10; overwrite it

•  Set	one	object	to	equal	the	value	of	another	object:	
>  myNumber <- 15
>  x <- myNumber # Both x and myNumber now contain 15

•  Modify	the	content	of	an	object:	
>  x <- x + sqrt(16) # add the square root of 16 to x

The	Assignment	Operator	"<-"	(or	equivalent:	"=")	

58

•  Functions	are	called	with	parentheses	()	after	the	function	name	

•  Arguments	are	the	input	to	functions,	passed	inside	the	()	
>  ls() # no argument – list objects in workspace

>  sqrt(81) # one argument – square root of the input

>  rep(1,5) # two arguments – repeat the number 1, 5 times

•  Arguments	have	names	(specified	in	the	function	definition).	Function	calls		
can	be	made	with	unnamed	or	named	arguments	or	a	mix	of	both.	Use	"="		
for	named	arguments.	
>  rep(x=1, times=5)
>  rep(1, times=5)

Named args. Equivalent to rep(1,5)

Mixed. Equivalent to rep(1,5)

Using	Functions	(I)	

59

Check R help (?function_name) to see

which arguments are expected by a function.

Many	functions	take	more	than	one	argument	
•  If	unnamed,	arguments	must	be	listed	in	correct	order	(association	by		
position).	

•  If	named,	arguments	can	be	passed	in	arbitrary	order	(association	by	name).	
	
>  write.table(object, "outfile.txt", TRUE)

>  write.table(object, append=TRUE, file="outfile.txt")

Using	Functions	(II)	

60

Unnamed arguments: must appear in their correct position

Named arguments: their position does not matter

Using	Functions	(III)	

Some	functions	have	arguments	with	default	values.	

Example:	function	round()	
Usage (from R Help): round(x, digits = 0)

Arguments	with	default	values	can	be	omitted	in	the	function	call;	the	default		
value	is	then	used.	Arguments	without	default	values	cannot	be	omitted.	

>  round(2.011)
[1] 2

#rounding to 0 digits after decimal point

(default value)

> round(2.011, 2) #rounding to 2 digits after decimal point
[1] 2.01

default	value	

61

62

Using	and	understanding	the	help/documentation	is	50%	of	what		
makes	a	programmer!	

•  Look	up	the	help	page,	try	the	examples,	experiment	
?paste

?"^"

Also,	internet	is	your	friend:	

	
Google	"R	paste	function"		

"R	how	to	…"	
	
https://stackoverflow.com/questions/tagged/r	

Using	Functions	(IV)	

Let’s	practice	–	3	
For	all	exercises,	feel	free	to	use	

- cheat	sheets	on	internet	or	provided	on	the	online	document	
- R	help	(?	at	command	prompt)	

	
Open	a	new	script	file	and	save	it	as	ex3.R	
	
1) Assign	the	values	6.7	and	56.3	to	variables	a	and	b,	respectively.	

2) 	Calculate	(2*a)/b	+	(a*b)	and	assign	the	result	to	variable	x.		
	Display	the		content	of	x.	

	
3)	Find	out	how	to	compute	the	square	root	of	variables.		
	Compute	the		square	roots	of	a	and	b	and	of	the	ratio	a/b.	

	
4)	a)	Calculate	the	logarithm	to	the	base	2	of	x	(i.e.,	log2	x).	

b)	Calculate	the	natural	logarithm	of	x	(i.e.,	loge	x).	

•  vector	–	a	series	of	data,	all	of	the	same	type	
•  matrix	–	multiple	columns	of	same	length,	all	must	have	the		
same	type	of	data	

•  data	frame	–	multiple	columns	of	same	length,	can	be	mix		
of	data	types	

•  list	–	a	collection	of	objects;	can	be	of	different	classes	and		
different	sizes	

•  function	–	a	command	to	perform	a	specific	task	

Common	Object	Classes	

Da
ta
	o
bj
ec
ts
	

64

Fu
nc
tio

n	
ob

je
ct
s	

Graphical	View	on	Data	Object	Classes	

From	M.	Stadler	
65

Vector:	A	series	of	data,	all	of	the	same	type	

#	c()	stands	for	concatenate	
•  Create	a	vector	using	c()	
height_in_cm <- c(180, 167, 199)

•  Create	a	vector	using	c()	where	each	element	has	a	name	
height_in_cm <- c(Mia=180, Paul=167, Ed=199)

•  Access	elements	of	a	vector	using	[]	
the first element

1stthe and 3rd element
height_in_cm[1]
height_in_cm[c(1,3)]
height_in_cm["Paul"]

get
get
get the element named "Paul"

Creating	Objects:	Vectors	

66

Scalars in R (the simple variables we have seen so far)

can be thought of as vectors of length 1.

•  Vectors	of	defined	length	with	default	value	
>  numeric(4); character(4); logical(4)

•  :	(colon	operator)	
>  a <- 1:10

step by 2

•  seq()	 for	sequences	with	any	step	size	
>  s <- seq(4,10,2) #start at 4, end at 10,

•  rep()	for	vectors	with	repeating	elements	
>  genotypes <- c(rep("WT",3), rep("KO",3))

•  Trick	:	Use	[]	to	extract	repeated	elements	
>  tplayer <- c("Federer", "Nadal")
>  tplayer[c(1,1,1,2,2,1)] #3x Federer, 2x Nadal, 1x Federer

Creating	Objects:	More	Ways	to	Generate	Vectors	

67

Applying	operators	to	vector	results	in	element-wise	operations	
>  a
[1] 1 2 3 4

68

a by 2 >  a * 2 # multiply each element of [1]

 2 4 6 8

>  a + c(12,10,12,10) # add the elements in 2 vectors
[1] 13 12 15 14

Vector	Manipulation	(I)	

Many	functions	take	a	vector	as	argument.	
Some	perform	an	element-wise	operation.	Example:	
>  log2(a) # compute the logarithm in base

69

2 of each element

[1] 0.000000 1.000000 1.584963 2.000000

Some	return	a	single	value.	Example:	
>  mean(a) # compute mean of the elements

[1] 2.5

Vector	Manipulation	(II)	

•  All	elements	of	a	vector	must	be	of	the	same	type	
•  If	combining	different	types,	they	will	be	coerced	to	the	most		
flexible	type	
•  least	to	most	flexible	are:	logical	<	numeric	<	character	

	
Example:	

>  vec <- c(12, "twelve", TRUE) #combine 3 data types
>  vec #all are coerced to character

[1] "12" "twelve" "TRUE"

>  class(vec)

[1] "character"

Coercion	

70

•  We	can	coerce	an	existing	vector	to	another	type	using	the		
functions	as.logical(),	as.numeric(),	as.character().	

•  Example:	Coerce	a	logical	vector	to	numeric	
Values	are	converted	to	1	(for	TRUE)	and	0	(for	FALSE)	

• we	can	use	as.numeric()	for	explicit	coercion	
• we	can	use	mathematical	functions	on	logical	vectors,	coercion	to	numeric		
happens	automatically	

>  x <- c(FALSE, FALSE, TRUE)
>  as.numeric(x)
>  sum(x)
>  mean(x)

number that are true

proportion that are true

71

Coercion	(II)	

•  A	factor	is	a	vector	containing	values	from	a	limited	set;	used	for		
storing	categorical	data.	

•  Example:	Genotype	of	mouse	individuals	
>  genotype <- factor(c("WT", "WT", "Mut2", "Mut1", "Mut2"))

The	available	values	in	a	factor	are	called	levels.	Extract	them:	

>  levels(genotype)
[1] "Mut1" "Mut2" "WT"

•  Convert	the	factor	back	to	a	character	vector:	
>  geno <- as.character(genotype)

Factors	

72

•  By	default,	factor	levels	are	sorted	alphabetically.	
•  We	can	specify	a	different	sorting	with	the	argument	levels.	

Factors	with	Custom	Sorted	Levels	

73

•  Example:	Genotype	of	mouse	individuals	
>  genotype <- factor(c("WT", "WT", "Mut2", "Mut1", "Mut2"),

levels = c("WT", "Mut1", "Mut2"))

>  levels(genotype)
[1] "WT" "Mut1" "Mut2"

Levels	are	sorted	the	way	we	wanted	

Let’s	practice	-	4	
1) 	Create	two	vectors,	vector_a	and	vector_b,	containing	the	values	from	−5	to	5	and		
from	10	down	to	0,	respectively.	

2) 	Calculate	the	(element-wise)	sum,	difference	and	product	between	the	elements		
of	vector_a	and	vector_b.	

3) a)	Calculate	the	sum	of	elements	in	vector_a.	
b) Calculate	the	overall	sum	of	elements	in	both	vector_a	and	vector_b.	

4) a)	Identify	the	smallest	and	the	largest	value	in	vector_a	
b) among	both	vector_a	and	 vector_b.	

5)  Compute	the	overall	mean	of	the	values	among	both	vector_a	and	vector_b.	
	
Hint: Each task in exercises 1-5 can be performed in a single statement per
vector (the minimum and maximum count as 2 tasks)

•  Arithmetic	
+,	-,	*,	/,	^	

•  Comparison	
>,	<,	<=,	>=,	==	(equal	to),	!=	(not	equal	to)	

•  Logical	
!	(negation),	&	(AND),	|	(OR)	

•  Other	
%in%	(in	operator)	

Operators	(Most	Commonly	Used	Ones)	

Comparisons, logical operators and %in%
always return logical values! (TRUE, FALSE)

76

>  c(1,3,2) == 2
[1] FALSE FALSE TRUE

>  !(c(1,3,2) < 2)
[1] FALSE TRUE TRUE

>  table(!(c(1,3,2) < 2))
#FALSE

TRUE #2 1

"Ali") %in% >  c("Fred", "Marc", "Dan",
c("Dan", "Geoff", "Ali")

[1] FALSE FALSE TRUE TRUE

Operators	returning	logical	values:	examples	

77

•  R	distinguishes	between	
•  NA	(not	available)	
•  NaN	(not	a	number,	e.g.	result	of	0/0)	

•  Use	the	functions	is.na()	and	is.nan()	to	detect	them.	

Missing	Values	

78

Missing	values	are	usually	represented	by	NA:	
>  y <- c(1,2,3,4,5,NA,NA)

NA's	interfer	with	many	functions:	
>  mean(y)
[1] NA

Arguments	often	exist	to	remove	NA's	before	calculation	
>  mean(y, na.rm=TRUE)
[1] 3

Alternatively,	use	na.omit()	to	remove	NAs	from	the	data	
>  y_cleaned <- na.omit(y)
>  mean(y_cleaned)
[1] 3

Missing	Values:	Examples	(I)	NA	

80

with >  x <- c(1, NA, 0/0) ; x # a vector to play
[1] 1 NA NaN

and NaN to a number?

>  is.na(x) #detects NAs and NaNs from x
[1] FALSE TRUE TRUE

>  is.nan(x) # detects only NaNs from x
[1] FALSE FALSE TRUE

>  x > 2 # what if we try to compare NA

[1] FALSE NA NA

>  x[!is.na(x)] # removes NAs and NaNs from x

[1] 1

Missing	Values:	Examples	(II)	

81

data	frame:	multiple	columns	of	same	length,	can	be	mix	of	data	types	

Create	a	data	frame	using	the	function	data.frame()	
>poets <- data.frame(name, status, reader_rating)

>poets

Creating	Objects:	Data	Frames	

84

> name <- c("Joyce", "Chaucer", "Homer")

> status <- c("dead", "deader", "deadest")

> reader_rating <- c(55, 22, 100)

List:	a	collection	of	objects;	can	be	of	different	classes	and	different	sizes	
	
Create	a	few	objects:	
>  vec <- c(0.4, 0.9, 0.6)
>  mat <- cbind(c(1,1), c(2,1))
>  df <- data.frame(name=c("Ed", "Lisa"), age=c(61, 71))

Unnamed	list	-	collect	these	objects	in	a	list,	using	the	function	list():	
>  l <- list(vec, mat, df)

Named	list	-	collect	these	objects	in	a	list	with	named	elements:	
>  l_with_names <- list(myvec=vec, mymatrix=mat, mydata=df)

Creating	Objects:	Lists	

85

The	function	class()	is	useful	when	we	are	not	sure	what	kind	of		
object	we	are	dealing	with.	

	
•  for	vectors,	returns	the	basic	data	type	of	its	elements		
("numeric",	"character",	"logical",	…)	

similar	to	mode()	but	slightly	more	fine-grained	
- recognizes	"integer"	as	different	from	"numeric"	
- recognizes	factors	(categorical	variables)	

•  for	all	other	objects	covered	on	previous	slide,	returns	their	class		
("matrix",	"data.frame",	"list",	"function",	...)	

Detecting	Data	Types	and	Object	Classes	

86

Accessing	Data	Elements	
matrix:	

87

>m[2, 2] # gets the element on row 2 in column 2

>m[1:3,] # gets rows 1,2,3

>m[, c(1,4)] # gets columns 1 and 4

data	frame:	
>poets[2, 2]

>poets[, c(1,3)]

gets the element on row 2 in column 2

gets columns 1 and 3

>poets[, c("name", "reader_rating")] # gets columns "name"
and "reader_rating"

>poets$name # gets column "name"

list:	
>l[[1]] # gets the first object

>l_with_names[["myvec"]]# gets the object named "myvec"

>l_with_names$myvec # gets the object named "myvec", too

Accessing	Names	of	Data	Elements	

88

matrix	and	data	frame:	
>rownames(poets) # gets the row names

>colnames(poets) # gets the column names

>rownames(poets) <- c("J", "C", "H") # overwrites row names

list:	
>names(l_with_names) # gets the list elements' names

>names(l_with_names) <- c("A", "B", "C") # overwrites names

Open	a	new	script	and	save	it	as	"Ex5.R".	Comment	it.	
1)  In	your	script,	write	the	command	to	load	the	package	"MASS".	
2) Write	the	following	command	to	load	the	bacteria	data	set	from	the	package		
MASS:	
data(bacteria) # loads the bacteria data set (from MASS)

Execute	the	command.	Check:	You	should	have	a	variable	named	"bacteria"	in	your		
Environment.	
	
3) What	are	the	names	of	the	columns	of	the	bacteria	data.frame	?	
4) Use	[]	 to	select	rows	100	to	119	of	the	column	“ap”	.	
5) Use	$	to	get	the	column	"week"	and	check	how	many	missing	values	it	has.	
	
Optional	:	6)	Count	how	many	rows	correspond	to	a	“placebo”	treatment	(“trt”		
column)	using	the	comparison	operator	"==".	

Let’s	practice	–	5	

•  Everything	in	R	is	an	object.	
•  Using	R	is	all	about	creating	and	manipulating	data	objects	using		
functions	(which	are	themselves	objects).	

•  Objects	can	be	assigned	to	a	name	

•  Objects	have	a	class	(data	frame,	matrix,	list	etc)	

•  Data	values	inside	objects	have	different	data	storage	modes		
(numeric,	character,	logical)	

•  We	covered	many	ways	to	generate	data	(create	objects).	

•  Now,	let's	import	some	data	!	

In	a	Nutshell	

Importing,	Formatting	and	
Exporting	data	with	R	
	

04

Before	using	R	and	importing	the	dataset	you	collected	from	an		
experiment,	you	need	to	know	how	to	format	it	properly,	so	R	can		
read	it.	
	
A	spreadsheet	program	such	as	Excel	or	OpenOffice	can	be	used	for		
data	entry	and	simple	manipulation.	
	
Three	precepts	of	tidy	data:	
1.  Each	variable	forms	a	column.	
2.  Each	observation	forms	a	row.	
3.  Each	type	of	observational	unit	forms	a	table.	
http://www.ucd.ie/ecomodel/pdf/TidyData.pdf	

Prepare	Your	Data	Outside	of	R	

97

Example	of	Well-Formatted	Dataset	

•  A	header	line	with		variable	names	
•  5	variables,	one	in		each	column	
•  One	observation	per		row	

98

•  If	you	work	with	spreadsheets,	the	first	row	is	usually	reserved	for		
the	header.	

•  The	first	column	may	or	may	not	be	an	ID	column.	
•  Remove	blank	spaces	from	column	names	and	in	fields.	If	you	want		

to	concatenate	words,	insert	a	"_"	between	words.	
•  Avoid	column	names	containing	symbols	other	than	"_".	
•  Short	names	are	preferred	over	longer	names.	
•  Delete	any	comments	or	other	content	in	the	spreadsheet	that	are		

not	part	of	the	data	table	but	are	above,	below	or	beside	the	data		
table.	

•  Make	sure	that	any	missing	values	in	your	data	set	are	indicated	with		
NA.	(Check	spelling!	N.A.	or	n.a.	does	not	work.)	

Formatting	Recommendations	–	Checklist	

100

Other	Recommendations	

101

•  If	you’re	using	a	spreadsheet,	keep	a	copy	of	the	original	data	as		
it	was	provided	to	you.	Prepare	a	new,	"cleaned"	version	for		
your	data	analysis.	

•  Do	not	include	columns	that	you	do	not	need	for	your	analysis.	
•  Have	data	backups!	

•  Export	the	spreadsheet	to	your	computer	in	a	text	file	format:	
•  csv	(comma	separated	values)	format,	with	file	extension	.csv	OR	
•  tsv	(tab	separated	values)	format,	with	file	extension	.txt	or	.tsv	

Saving	Your	Data	

Now you are ready to
start with the analysis

102

Keep your data safe:
Have a back up!

103

•  Most	widely	used	R	base	functions	for	data	import:	read.table()	,	
read.csv()	and	read.delim()	

•  reads	a	formatted	text	file	

•  imports	it	as	a	data	frame	

•  many	options,	to	accommodate	most	text	files	(e.g.,	csv,	tsv).	

105

•  To	read	an	entire	data	frame	from	a	file,	it	should	have:	
1.  a	header	line	containing	the	names	of	all	variables	

->	(not	obligatory	but	preferable)	
2.  one	line	per	row,	with	values	for	each	variable	

->	(missing	values	should	be	indicated	using	NA)	
3.  Items	must	be	separated	by	the	same	separator	symbol	

->	(most	common:	,	;	\t)	

Importing	Data	

•  Where	is	the	file	I	want	to	import?	
•  Look	for	your	file	in	the	file	system.	
•  Note	its	path:	the	succession	of	folders	to	access	it	

•  Where	is	my	working	directory?	
•  use	getwd() 	(recommendation:	should	be	the	project	directory)	

106

Importing	Data	–	Two	Questions	

File paths can be specified as a string with '/' as separator:
"C:/Users/Leo/courses/data/clinical_data.csv"

Or with a little help from the function file.path():
file.path("C:", "Users", "Leo", "courses", "data",
"clinical_data.csv")

File	Paths	in	R	

WARNING:
On Windows : replace ‘\’ by ‘/’

107

R understands "." and ".." for relative file paths
. is the current directory (=working directory)
.. is the parent directory

"./course_datasets/clinical_data.csv" # file "clinical_data.csv" in
subfolder "course_dataset" of current directory
"../../clinical_data.csv" # file "clinical_data.csv", 2 levels up from
current directory

Also works with file.path():
file.path("..", "..", "clinical_data.csv")

108

File	Paths	in	R 	-	Relative	

•  Data file is in the working directory: file name suffices.
read.csv("clinical_data.csv“)

•  Data file is in a sub-folder of working directory: It's easy to use a
relative path. (Great option for projects shared with others).

•  read.csv("course_datasets/clinical_data.csv") or
read.csv(file.path(”course_datasets", "clinical_data.csv"))

•  Data file is somewhere else or you are not working inside a
project: it's safest to use an absolute path (but can be more painful to
specify!).
read.csv("C:/Users/Leo/courses/data/clinical_data.csv”)

109

Importing	Data	–	File	Paths	
read.csv() needs to know where the file is located.

Importing	Data	
Important	optional	arguments	of	read.table(),	read.csv(),	read.delim()	

When in doubt, use help(read.table)

•  header	(TRUE/FALSE):	specifies	whether	the	first	line	contains	column	names		
Default	in	read.table()	is	FALSE.	
Default	in	read.csv()	and	read.delim()	is	TRUE.	

	
•  sep:	specifies	the	field	separator	character	(e.g.	","	or	tab	"\t").	
Default	in	read.table()	is	any	white	space	characters	(space,	tab,	newline	and		
carriage	return).	
Default	in	read.csv()	is	comma.	Default	in	read.delim()	is	tab.	

	
•  colClasses:	manually	setting	each	variable	data	type	
	
	

110

The file can be imported as a data frame using the
functions read.table() or read.csv()

111

Use read.table()
we need to supply certain arguments
Clinical_data <- read.table("course_datasets/
clinical_data.csv",

 sep=",”,

 header=TRUE)

Use read.csv()
arguments can be omitted since defaults
are adapted to reading .csv
Clinical_data <- read.csv("course_datasets/
clinical_data.csv")

•  It	is	very	important	to	check	that	data	you	asked	R	to	import	is		
the	data	you	wanted.	

•  head()	returns	the	first	6	lines	of	the	data	frame	
•  dim()	returns	the	dimension	of	the	data	frame	
•  nrow(),	ncol()	returns	the	number	of	row	and	columns	
•  colnames()	and	rownames()	functions	return	the	column	and		
row	names	of	the	data	frame	

•  str()	returns	the	structure	of	the	data	frame	
•  summary()	is	a	generic	function	that	can	be	applied	to	many		
types	of	objects.	For	data	frames,	it	returns:	
•  Numeric	columns:	min,	max,	median,	mean,	1st	 and	3rd	 quantiles.	
•  Factors	columns:	 counts	of	each	factor	level	

Checking	the	Imported	Data	

112

> head(clinical_data) # shows first 6 rows
(tail(clinical_data) - shows last 6 rows)

113

> dim(clinical_data)
[1] 30 5

> nrow(clinical_data); ncol(clinical_data)
[1] 30
[1] 5

>  colnames(clinical_data) # column names

114

>  str(clinical_data) # structure of the data frame

R	made	its	best	guess	for	data	types.	
- Are	they	what	we	need?	
- Do	we	wish	to	convert	any	variables	to	factors?	

Convert	categorical	variables	to	factors	as	needed.	

> clinical_data$gender <- factor(clinical_data$gender)
>  clinical_data$stage <- factor(clinical_data$stage,

levels = c("I","II","III","IV"))

Setting	factor	variables	

115

> str(clinical_data) # structure of the data frame

>  summary(clinical_data)

116

>  clinical_data[2,] # 2nd row

>  clinical_data[, "age"] # column named «age»

Accessing	Parts	of	the	Data	

117

>  clinical_data$stage # vector of stages, equivalent to
clinical_data[, 5]

118

>  clinical_data$stage[30] # stages of the last row

•  subset()	is	a	powerful	function	which	allows	you	to	subset	your	data	by		
specific	columns	and	values	in	those	columns.	Logical	operators	can	be	used		
within	the	subset.	

	
>  subset(clinical_data, stage=="II") # keeps only the
samples where stage is "II"

Subsetting	the	Data	

119

>  subset(clinical_data, stage=="II" & gender=="female")
keeps

120

 samples from female patients in stage II

>  subset(clinical_data, (stage=="I" | stage=="II") &
gender=="female") # keeps samples from female
patients in stages I or II

tapply()	generates	custom	summaries	of	your	data	using	:	
�  X:	a	column	you	want	to	aggregate	(of	any	data	type)	
�  INDEX:	a	factor	column,	or	list	of	factor	columns,	for	grouping	
�  FUN:	a	function	to	be	applied	to	X	(mean,	sd,	min,	max,	length,		

median,	range,	quantiles…),	separately	for	each	grouping	indicated	by		
INDEX	

121

Customising	Summaries	of	Data	

>  tapply(X=clinical_data$age,
INDEX=clinical_data$stage, FUN=min)

In each stage, find the age from the youngest patient (min)

122

•  Rows	and	columns	of	data	can	be	added	using	the	functions	rbind()	and	
cbind(),	respectively.	

	
•  Add	a	row	to	the	clinical	data:	
>  clinical_updated <- rbind(clinical_data,
data.frame(sample_id = "LC02", collection_date =
"18.02.21", age=71, gender= "female", stage="I"))

•  Add	a	column	to	the	clinical	data:	
>  treated <- rep(c("yes","no"), nrow(clinical_data)/2)
>  clinical_mod <- cbind(clinical_data, treated)

Data	Reshaping	:	Adding	Rows	and	Columns	

Always check that your new dataset is what you
expect, the same way you did after you

imported the original one

.

•  Remove	the	new	column	of	indexes,	using	exclusion	(-)	or	column		
extraction	

	
>  clinical_orig <- clinical_mod[,-6] # remove the 6th
column

>  head(clinical_orig) # check resulting data

or	

>  clinical_orig <- clinical_mod[,1:5] # extract all
columns that you want to keep (from the 1st to the 5th)

>  head(clinical_orig) # check resulting data

Data	Reshaping	:	Removing	a	Column	

123

The	functions	write.table()	and	write.csv()	allow	to	write	a	data	frame	to	a	file.		

Example:	
>  write.table(clinical_updated, file="clinical_updated.csv",

quote=FALSE, sep=",",row.names=FALSE)

•  Important	optional	arguments	(check	?write.table	for	more):	
•  file	is	the	file	path	for	the	output	file	(if	file	name	without	a	path	is	given,	will		
be	stored	in	current	working	directory).	

•  append	allows	to	append	to	an	existing	file	(default	is	FALSE).	
•  quote	specifies	whether	the	elements	of	character	or	factor	columns	should	be		
surrounded	by	double	quotes	in	the	printed	output	(default	is	TRUE).	

•  sep	specifies	the	field	separator	to	be	used,	e.g.,	comma	(",")	 or	tab	("\t").	
•  row.names	specifies	whether	or	not	the	row	names	are	written	(default	is		
TRUE).	Alternatively,	accepts	a	character	vector	with	new	row	names	to	be		
written.	

•  col.names	specifies	whether	the	column	names	are	written	(default	is	TRUE).	

Exporting	Data	to	a	File	

124

•  How	to	import	data	into	data	frames	(R's	typical	container	for		
data)	

•  How	to	check	the	imported	data,	summarize	it	,	access	part	of	it,		
and	manipulate	it.	

•  How	to	export	data	to	files	

•  Next	step	tomorrow:	How	to	represent	data	graphically?	

In	a	Nutshell	

125

Let’s	practice	-	6	
A	clinical	dataset	from	patients	with	lung	cancer	is	available	in	the	file		
clinical_data2.csv.	Let's	explore	the	dataset	to	see		what	it	contains.	

1) Open	a	new	script	file	in	R	studio,	comment	it	and	save	it.	

2) Have	a	look	at	the	csv	file	in	R	studio's	file	explorer.	What	do	you	
need		to	check	in	order	to	be	able	to	read	in	the	file	correctly?	

3) Read	the	file	into	R,	assign	its	content	to	object	"clinical_data2".	
Examine		the	object.	

4) How	many	observations	and	variables	does	the	dataset	have?	

5) What	is	the	structure	of	the	dataset?	What	are	the	names	and	classes		
of	the	variables?	

6) Which	variables	appear	to	be	categorical?	Convert	them	to	factors.	

7) Get	the	summary	statistics	of	 "clinical_data2"	

Let’s	practice	–	6bis	
8)  Use	the	function	table()	to	compute	the	number	of	samples	in		

different	patient	groups.	a)	How	many	samples	are	included	of	
each	gender	(male,	female)?	b)	How	many	samples	are	included	
per	level	of	response	to	treatment	(PD,	SD,	PR,	CR)?	c)	Make	a	2x2	
table	gender	and	level	of	response	to	treatment.	

Hint	:	try	some	of	the	example	in	the	help(table)	page.	

9)  Isolate	the	samples	from	male	patients	using		subset().	Compute	
a	summary	statistics	just	for	the	weights	of	the		subset.	Then	do	
the	same	for	the	samples	from	female	patients.	Export	the	data	
of	each	subgroup	to	a	csv	file.	

10)  Compute	the	means	and	standard	deviations	for	male	and	 	female	
patient	 weights	 using	 tapply().	 Then	 do	 the	 same	 by	 level	 of	
response	to	treatment.	

Different	authorities	have	different	style	recommendations	for	naming	things,		
spacing,	operator	symbols,	layout,	commenting	etc.	
	
Example:	
https://web.stanford.edu/class/cs109l/unrestricted/resources/google-style.html	
	
Summary	of	selected	styles	from	above	guide	(relevant	to	course	content):	

File	names:	Use	meaningful	names,	ending	with	file	extension	
.R	 (predict_ad_revenue.R)
Identifiers:	Variable	names	should	have	all	lower	case	letters,	

words	separated	with	dots	(avg.clicks)
Line	length:	maximum	80	characters		
Indentation:	two	spaces,	no	tabs		
Assignment:	use	<-,	not	=		
Semicolon:	don’t	use	them	

R	Style:	Google’s	R	Style	Guide	

128

Spacing:	

	
Place	spaces	around	all	binary	operators	(=,	+,	-,	<,	etc.)	

Do	not	place	a	space	before	a	comma,	but	always	place	one	after	a	comma.		

Otherwise,	do	not	place	spaces	around	code	in	parentheses	or	square	brackets	

Good:	
Total <- sum(x[, 1]) # spaces around <- and after comma

Bad:	

Total<-sum(x[,1])

no spaces

Total <- sum (x[, 1]) # too many spaces

R	Style:	Google’s	R	Style	Guide	(II)	

129

Spacing	-	Exceptions:	

	
Spaces	around	=‘s	are	optional	when	passing	parameters	in	a	function	call.	
write.table(clinical_updated,
file="clinical_updated.csv", quote=FALSE,
sep=",",row.names=FALSE)

Extra	spacing	is	okay	if	it	improves	alignment	of	equal	signs	(=)	or	arrows	(<-).	

write.table(x

file

=

=

clinical_updated,

"clinical_updated.csv",

quote = FALSE,

sep = ",",

row.names = FALSE)

R	Style:	Google’s	R	Style	Guide	(III)	

130

This is twice the same function call:
styled for brevity and styled for readability.

Both versions conform to Google R style.

