
1	

	
	Analysis	of	flow	cytometry	data	with	R	

Training	for	life	scientists		

João	Lourenço,	Tania	Wyss	&	Nadine	Fournier	
Translational	Data	Science	–	Facility	
SIB	Swiss	Institute	of	Bioinformatics	

2	

Day	3		

Outline & Schedule

02

Normalization	/	batch	correction	03

Working	with	gated	data	in	R		
(Basics	and	Manual	gating)	
	

01 Importing	data	from	Excel	and	arranging	plots	in	a	grid	

04

Differential	state	analysis	using	a	paired	design	

3	

?	

Day	4	

Outline & Schedule

06

Examples and exercises are integrated in the
chapters

Generate	HTML	or	PDF	reports	05

Working	with	gated	data	in	R		
(Automated	Gating)	
	

04

4	

A.   Importing	data	from	Excel		
B.   Arranging	plots	in	grids	

01

Importing data from an Excel file

Package	xlsx		

https://cran.r-project.org/web/packages/xlsx/index.html	

	>	data	<-	read.xlsx2(file	=	"excelfile.xlsx",	

																						sheetName	=	"Sheet1")	

	

The	function	read.xlsx2	considers	the	empty	cells	as	""	character.	

	

	

	

	

The	function	read.xlsx	considers	the	empty	cells	as	NA	

	

	

	
5	

Exporting data to an Excel file

6	

Advantage:	no	risk	of	gene	name	conversion	to	date	like	with	csv	files	
Package	xlsx	can	be	used	to	export	a	data.frame	after	manipulating	it	within	R:	
>	data$id<-as.numeric(data$id)	
>	data$calc<-data$id+10	
>	write.xlsx2(x=data,		
																									file	=	"excelfile2.xlsx",		
																									row.names	=	FALSE,	
																								SheetName	=	"Sheet1")	
	
Another	package:	openxlsx	
https://cran.r-project.org/web/packages/openxlsx/index.html	
Allows	to	generate	several	separate	sheets	providing	a	named	list	of	data.frame	
objects:	
>	openxlsx::write.xlsx(x	=	list(SheetA=data[,	c(1,2)],	
																														SheetB=data),	
																					file	=	"excelfile3.xlsx")	
Doesn't	export	rownames	by	default.	
	
	
	
	
	

Arranging ggplot2 plots in a grid
Can	be	useful	to	compare	distribution	of	values	before	and	after	
transformation,	or	to	compare	a	UMAP	with	cells	colored	according	to	
different	markers.	

Package	cowplot	

https://cran.r-project.org/web/packages/cowplot/index.html	

First	save	each	ggplot2	plot	to	an	object:	

	

>	p1	<-	plotDR(sce,		dr	=		"UMAP",	
											assay	=	"exprs",		color_by="CD8")	
>	p2	<-	plotDR(sce,			dr	=		"UMAP",	
											assay	=	"exprs",			color_by="CD4")		
>	p3<-plotDR(sce,			dr	=		"UMAP",	
											assay	=	"exprs",			color_by="CD19")		
	

7	

Arranging ggplot2 plots in a grid
Use	the	plot_grid	function	to	arrange	them	in	a	grid,	e.g.	all	on	the	same	row:	

	

>	plot_grid(p1,	p2,	p3,	nrow	=	1)	
	

	

8	

9	

Differential	state	analysis	with	a	paired	
design	

02

Differential state (DS) analysis with paired
design

10	

>	res_DS	<-	diffcyt(sce_PBMC,		
	 	 	 	clustering_to_use	=	”final_annotation",	
	 	 	 	analysis_type	=	"DS",		
	 	 	 	method_DS	=	"diffcyt-DS-limma",	

				 	 	 	 	design	=	design,		
	 	 	 	contrast	=	contrast,	

																																			block_id	=	patient_id)	

Methods	for	DS:	uses	the	limma	package	

Differential expression of cell state markers within clusters

Vector	of	patient	IDs	

How to create a vector of patient IDs from the fcs file names?

11	

>	ei(sce)$sample_id	
 # [1] 0BF51C_0.fcs 0BF51C_14.fcs 0BF51C_7.fcs 0E1F8E_0.fcs 0E1F8E_14.fcs
 # [6] 0E1F8E_7.fcs 180E1A_0.fcs 180E1A_14.fcs 180E1A_7.fcs 1A9B20_0.fcs
[11] 1A9B20_14.fcs 1A9B20_7.fcs 61BBAD_0.fcs 61BBAD_14.fcs 61BBAD_7.fcs

Using	gsub()	:	
This	function	replaces	all	characters	having	a	same	pattern	with	other	characters.	
We	can	replace	the	_0.fcs,	_14.fcs	and	_7.fcs	extensions	by	an	empty	character:	
	
Create	a	vector	of	patient	IDs	for	block	design:	
>	patient_id	<-	ei(sce)$sample_id	
	
Use	gsub	to	replace	the	extensions	for	the	matching	elements	within	the	vector:	
>	patient_id	<-	gsub("_0.fcs",	"",	patient_id)	
>	patient_id	<-	gsub("_14.fcs",	"",	patient_id)	
>	patient_id	<-	gsub("_7.fcs",	"",	patient_id)	
	
>	patient_id	
[1] "0BF51C" "0BF51C" "0BF51C" "0E1F8E" "0E1F8E" "0E1F8E" "180E1A" "180E1A"
 [9] "180E1A" "1A9B20" "1A9B20" "1A9B20" "61BBAD" "61BBAD" "61BBAD"

Differential state analysis

12	

Extract results table - same method as for unpaired design:

>	tbl_DS	<-	rowData(res_DS$res)	
>	tbl_DS	

Differential state analysis

13	

Plot results for all markers

>	plotDiffHeatmap(sce_PBMC,	tbl_DS,	all=T	,	sort_by	=	"lfc”,	col_anno	="condition")	

Sorts	results	by	absolute	value	of	logFoldChange	

Let’s practice – 7 bis

14	

In	this	exercise	we	will	test	if	markers	were	differentially	expressed	between	two	
time	points	(D14	compared	to	D0),	using	a	paired	design	

	

Create	a	new	script	in	which	you	will	

1) 	Load	the	sce	object	from	exercise	number	6	("sce_annotated.RData").	

2) 	Create	a	vector	of	patient	IDs	from	the	fcs	file	names	using	gsub()	

3) 	Set	up	the	design	and	contrast	matrices.	

4) Test	for	differences	in	marker	expression	between	D14	and	D0,	including	

argument	block_id		

5) View	table	of	results	

15	

Normalization	/	batch	correction	03

16	

•  Workflow	based	on	
	

Spectral	flow	cytometry	analysis	workflow	

https://doi.org/10.3389/fimmu.2021.768113	
Provide	R	code	to	perform	the	proposed	workflow	

17	

Suggested	workflow:	Figure	1,	den	Braanker	et	al	

ht
tp
s:
//
do

i.o
rg
/1
0.
33
89
/f
im

m
u.
20
21
.7
68
11
3	

Data	analysis	in	R	
	
	
	
	
	
	
	
	
	
	
	
	
	

18	

Simplified	workflow	
presented	in	day	1	and	2	

Data	
acquisition	

Planning	and	
Preparation	

Preprocessing	
(formatting,	
cleaning,	QC)	

Data	Representation	(plots,	tables)	

Analysis	
(dimensionality	

reduction,	
clustering)	

Exploration	

Communicate	
(reports)	

Import		

Export	
Results	

Manual	
analysis		

(QC,	gating)	

Sub-sampling	

Normalization	

CytoNorm	

Install	using	devtools	package:	
>	library(devtools)		

>	install_github('saeyslab/CytoNorm’)	
	

Why	do	we	need	to	normalize?	

Shifts	that	occur	because	of	batch	can	have	effects	on	DR	for	example.	
Computational	methods	can	align	the	distribution	of	markers	across	samples.		

Normalization	methods	without	a	reference	sample	can	hide	biologically	
relevant	differences	in	cell	subsets.	Different	cell	types	are	impacted	
differently	by	batch	effects	(Finak	et	al,	2014,	Cytom.	Part	A)	

	

19	

Available	on	github:	https://github.com/saeyslab/CytoNorm	
van	Gassen	et	al,	2020	https://onlinelibrary.wiley.com/doi/epdf/10.1002/cyto.a.23904	

	
	

CytoNorm	–	algorithm	overview	

20	

An	example	of	shifts	across	plates	

21	

Plate	ID	 Plate	ID	

Assumption:	clusters	are	not	affected	by	batch	

22	

Normalization	enhances	DR	plot	

23	

1,000	randomly	sampled	cells	for	each	of	10	samples	

Functions of CytoNorm
Functions	use	flowSet	objects	containing	transformed	data	(eg	arcsinh	with	fixed	
cofactor).	

Generate	pre-clustering	with	flowSOM:	

>	fsom	<-	prepareFlowSOM(train_files,		

																							colsToUse	=	markerstotransf,		

																							transformList	=	NULL,		

																							FlowSOM.params	=	list(xdim=10,	

																																																																	ydim=10,		

																																																																		nClus=20,	scale=FALSE))	

	

Test	for	coefficient	of	variation	within	clusters:	

>	cvs	<-	CytoNorm::testCV(fsom,	cluster_values	=	c(5,10,15,20),	plot=TRUE)	
>	range(cvscvs`20`)	#	0.05758965	1.43114512	
If	the	clusters	are	impacted	by	batch	effects,	CV	values	of	>1.5	-	2	will	occur,	then	
you	can	choose	to	put	FlowSOM.params	to	NULL		and	skip	clustering.	

	

	

flowSet	with	technical	replicates	of	a	
single	sample	

Markers	to	use	for	clustering	(eg.	"type"	
marker_class)	

FlowSOM	parameters:	number	of	
grids	and	of	metaclusters	

24	

Functions of CytoNorm
Train	the	model,	i.e.	evaluate	quantiles	from	technical	replicates:	

model	<-	CytoNorm.train(files	=	train_files,	
																								labels	=	labels_train,	
																								channels	=	markerstotransf,	
																								transformList	=	NULL,	
																								FlowSOM.params	=	list(nCells	=	6000,		
																																														xdim	=	10,	
																																														ydim	=	10,	
																																														nClus	=	5,	
																																														scale	=	FALSE),	
																								normMethod.train	=	QuantileNorm.train,	
																								normParams	=	list(nQ	=	101,	
																																										goal	=	"mean"),	
																								seed	=	1,	
																								verbose	=	TRUE)	
	

	

	

flowSet	with	technical	replicates	of	a	
single	sample	

Markers	to	use	for	clustering		
(eg.	"type"	marker_class)	

FlowSOM	parameters:	number	of	
grids	and	of	metaclusters	

Vector	of	batch	ID	labels	for	each	technical	
replicate	within	the	train	flowSet	

	Compute	quantiles	to	describe	the	
distribution	of	the	data,	and	infer	
spline	functions	to	equalize	these	
distributions	over	the	files.	

25	

Functions of CytoNorm
Normalize	the	rest	of	the	samples:	

	

>	CytoNorm.normalize(model	=	model,	
																			files	=	validation_files,	
																			labels	=	label_norm,	
																			transformList	=	NULL,	
																			transformList.reverse	=	NULL,	
																			normMethod.normalize	=	QuantileNorm.normalize,	
																			outputDir	=	"course_datasets/FR_FCM_Z4KT/Normalized",	
																			prefix	=	"Norm_",	
																			clean	=	TRUE,	
																			verbose	=	TRUE)	
	

	

	

flowSet	with	the	rest	of	the	samples	

Output	folder	where	new	fcs	files	will	
be	created	with	prefix	"Norm_	

Vector	of	batch	ID	labels	for	each	sample	of		
the	samples	to	be	normalized	

	Compute	quantiles	and		
infer	spline	functions	to	equalize	
these	distributions	over	the	files.	

Model	with	quantiles	obtained	using	
CytoNorm.train()	

26	

Before the exercise:
the grep() function

It	allows	to	search	for	a	pattern	of	characters	within	a	vector:	
>	grep("pattern",	myvector)	

Will	return	numbers	of	elements	within	the	vector	that	correspond	
to	that	pattern:	
>	myvector	<-	c("abc",	"xyz",	"abcd",	"abxyz",	"cdy")	
>	grep("abc",	myvector)	
#	[1]	1	3	
	

Use	it	on	flowSet	sampleNames	to	split	a	flowSet	based	on	sample	
ID:	
>	train_files	<-	fcs_transform[grep("REU271",	sampleNames(fcs_transform))]	
	
>	validation_files	<-	fcs_transform[-c(grep("REU271",	sampleNames(fcs_transform)))]	

27	

Let’s practice – 8

28	

In	this	exercise	we	will	perform	normalization	(i.e.	batch	correction)	for	fcs	files	
provided	in	accession	FR_FCM_Z4KT	of	the	FlowRepository.	

	
Create	a	new	script	in	which	you	will:	

1)  Create	a	flowSet	called	fcs_data	of	all	samples	within	the	/course_dataset/FR_FCM_Z4KT	folder	

2)  Generate	a	panel	data.frame	using	colnames(fcs_data)	antigen	names	extracted	with	

pData(parameters(fcs_data[[1]]))$desc.	Create	a	new	column	called	marker_class	that	will	contain	

the	type	of	markers:	all	that	are	not	NA	should	be	labeled	as	"type",	except	PD-1	which	should	be	

labeled	as	"state".	Make	sure	that	the	antigen	"Zombie	UV"	is	labeled	as	"none"	and	not	as	"type".	

Save	the	panel	to	an	Excel	file	using	write.xlsx2().		

3)  Transform	the	data:	extract	a	vector	from	the	panel	data.frame	which	are	the	channels	to	be	

transformed,	which	are	not	labeled	with	"none".	Perform	asinh	transformation	with	a	cofactor	of	

3000	for	all	channels	to	be	transformed,	using	transFlowVS()	from	the	flowVS	package.	

4)  Split	the	flowSet	resulting	from	transformation	into	a	training	flowSet	containing	all	flowFrames	from	

the	sample	"REU271",	and	a	flowSet	with	the	rest	of	the	flowFrames	not	corresponding	to	sample	

"REU271".	Use	the	grep()	function	on	the	sampleNames	of	the	flowSet.	

Let’s practice – 8 - continued

29	

5)	Perform	pre-clustering	with	flowSOM	with	function	prepareFlowSOM(),	providing	the	flowSet	with	the	
training	flowFrames,	the	vector	of	channels	used	for	transformation	(i.e		not	equal	to	"none"	in	marker	
class),	and	FlowSOM.params	=	list(xdim=10,	ydim=10,	nClus=20,	scale=FALSE)	
	
6)	Test	the	coefficient	of	variation	within	clusters	with	the	testCV()	function.	
	
7)	Import	the	metadata	with	the	batch	label	of	each	sample	contained	in	the	excel	file	md.xlsx,	using	
read.xlsx2().	Create	2	vectors	using	the	column	"batch"	in	the	md.xlsx	file.	One	vector	contains	the	batch	
labels	of	the	samples	that	correspond	to	sample	"REU271",	and	another	vector	contains	the	batch	labels	of	
the	other	samples	(i.e.	not	"REU271").		
	
8)	Estimate	quantiles	from	the	training	flowSet	using	CytoNorm.train().	Use	FlowSOM.params	=	list(nCells	=	
6000,	xdim	=	10,	ydim	=	10,	nClus	=	5,	scale	=	FALSE)	
	
9)	Normalize	the	rest	of	the	samples	using	CytoNorm.normalize(),	and	using	outputDir	=	"course_datasets/
FR_FCM_Z4KT/Normalized"	;	Make	sure	this	is	a	new	folder.	
	
10)	Choosing	one	channel,	create	a	ridge	plot	of	its	distribution	within	samples	before	normalization	
(without	the	training	samples),	and	one	for	the	normalized	samples.	For	this,	you	need	to	create	a	new	
flowSet	with	the	created	Norm_	fcs	files.	Use	the	densityplot()	function	for	each	flowSet,	storing	the	output	
in	2	objects,	then	use	the	cowplot	plot_grid()	function	to	plot	one	above	the	other.	

30	

Working	with	gated	data	in	R	
												
	
	
								Basics	and	Manual	Gating	

04

•  The	GatingSet	class	of	objects	(flowWorkspace)	for	working	
with	gating	data	in	R	

•  Import	a	FlowJo	or	Cytobank	workspace	(xml	file)	with	gating	
data	into	R	

•  Manual	gating	from	scratch	
•  Using	functions	from	the	flowWorkspace	package	
•  Using	a	graphic-based,	interactive	tool	(flowGate	package)	

•  Automated	gating	methods	
•  flowClust	package	
•  OpenCyto	package	

31	

Gating	data	in	R	

•  Provides	the	GatingSet	class	of	objects	as	an	efficient	data	
structure	to	store,	query	and	visualize	gated	flow	data	

•  A	GatingSet	(gs)	stores	multiple	GatingHierarchy	(gh)	objects	
associated	with	individual	samples	

GatingSet	~	flowSet	
GatingHierarchy	~	flowFrame	

•  Unlike	flowSets,	functions	that	operate	on	a	GatingSet	have	
the	potential	side-effect	of	modifying	the	object	(all	the	
modifications	are	made	to	the	external	pointer,	rather	than	the	
R	object	itself)	

32	

flowWorkspace	

https://bioconductor.org/packages/release/bioc/html/flowWorkspace.html		

•  Contains	FCS	data	files,	XML	workspaces	and	GatingSets	for	
testing	the	flowWorkspace	and	openCyto	packages	

•  Data	from	whole	blood	

33	

flowWorkspaceData	

https://bioconductor.org/packages/release/bioc/html/flowWorkspace.html		

34	

Create	a	gatingSet	

Ways	to	generate	a	gatingSet:	
-  Imported	from	workspace	XML	files	

from	FlowJo,	CytoBank	or	other	
software	using	CytoML	package	

-  Built	from	scratch	within	R	(manual	gating)	
-  Generated	by	automated	gating	methods	(e.g.	openCyto	

package)	

•  Uses	platform-specific	
implementations	of	the	
GatingML2.0	standard	
to	exchange	gated	
cytometry	data		

35	

Import	a	workspace	using	CytoML	

https://bioconductor.org/packages/release/bioc/html/CytoML.html		

#	import	workspace	from	FlowJo	
	>	ws	<-	open_flowjo_xml("course_datasets/flowWorspaceData/manual.xml")	
	>	gs	<-	flowjo_to_gatingset(ws,	name	=	"T-cell")	
	

36	

flowWorkspace:	basics	on	GatingSet	objects	

#	List	the	samples	stored	in	the	GatingSet	
>	sampleNames(gs)	
[1]	"CytoTrol_CytoTrol_1.fcs_119531"	"CytoTrol_CytoTrol_2.fcs_115728"	

#	Access	metadata	
>	pData(gs)	
	
#	Add	metadata		
pData(gs)$condition	<-	c("treatment","control")		
	

#	Subset	a	GatingSet	by	metadata	column		
>	subset(gs,	subset	=	treatment	==	"control")	
A GatingSet with 1 samples	

#	Retrieve	a	GatingHierarchical	(one	sample)	
>	gh	<-	gs[[1]]	
>	gh	

37	

flowWorkspace:	basics	on	GatingSet	objects	

#	plot	the	gating	hierarchy	(tree)	
>	plot(gs)	

38	

flowWorkspace:	basics	on	GatingSet	objects	

#	Delete	a	gate	
>	Rm(gs,	"DPT")	or	gs_pop_remove(gs,	"DPT")	
>	plot(gs)	

39	

flowWorkspace:	basics	on	GatingSet	objects	

#	list	nodes	(cell	populations)		
>	gs_get_pop_paths(gs,	path	=	2)	
	
	
	
	
>	gs_get_pop_paths(gs,	path	=	"full")	
	
	
	
	
	
	
	
	
>	gs_get_pop_paths(gs,	path	=	"auto")	

40	

FlowWorkspace:	basics	on	GatingSet	

#	retrieve	data	from	all	nodes	as	a	cytoset	
	>	cs	<-	gs_pop_get_data(gs)	
	>	class(cs)	
[1] "cytoset"
attr(,"package")
[1] "flowWorkspace"	
	
#	convert	the	cytoset	to	a	flowSet	
	>	fs	<-	cytoset_to_flowSet(cs)	
	
	
#	check	the	number	of	cells	in	the	flowSet	
	>	fsApply(fs,	nrow)	

#	retrieve	data	associated	to	one	node	(gate)	
	>	cs	<-	gs_pop_get_data(gs,	"CD4")		
	>	fs	<-	cytoset_to_flowSet(cs)	
	>	fsApply(fs,	nrow)	

41	

FlowWorkspace:	basics	on	GatingSet	object	

#	Get	membership	indices	with	respect	to	a	gate	
>	gh_pop_get_indices(gs[[1]],	"CD4")	
	
	
	
	
>	table(gh_pop_get_indices(gs[[1]],	"CD4"))	

#	save	/	load	a	GatingSet	
>	save_gs(gs,	path	=	"course_datasets/flowWorspaceData/gs")	
>	gs2	<-	load_gs("course_datasets/flowWorspaceData/gs")	

The regular R assignement (<-) or save() routine
doesn't work for GatingSet objects

Start	from	a	flowSet	(flowCore)	

42	

Build	a	GatingSet	from	scratch	

Start	from	a	single	cell	experiment	object	(CATALYST)	

#	Read	the	FCS	files	
>	fs	<-	read.flowSet(path="course_datasets/flowWorspaceData/",	pattern	=	"*.fcs")	
	
#	Arcsinh	transform	with	flowVS	
>	panel	<-	pData(parameters(fs[[1]]))		
>	markerstotransf	<-	as.character(panel$name[!is.na(panel$desc)])	
>	fcs_transform	<-	transFlowVS(fs,	channels	=	markerstotransf,		
																																				cofactors	=	rep(3000,length(markerstotransf)))	
#	Convert	to	a	GatingSet	
>	gs	<-	GatingSet(fcs_transform)	#	convert	the	flowSet	to	GatingSet	

	
	>	load("course_datasets/FR_FCM_Z4KT/DA_example_sce_PBMC.RData")	#	load	the	sce		
	>	fs	<-	sce2fcs(sce_PBMC,	assay	=	"exprs")	#	convert	sce	to	flowSet	(CATALYST)		
	>	gs	<-	GatingSet(fs)	#	convert	flowSet	to	GatingSet	

43	

Manual	gating	:	rectangle	gate	
# Create a rectangle gate	
>	rg1		<-	rectangleGate("FSC-A"=c(60000,260000),		
																																										"SSC-A"=c(1,	250000),		
																																											filterId="NotDebris")	
	
#	Add	the	gate	to	the	GatingSet	object	
>	gs_pop_add(gs,	rg1,	parent	=	"root")	
	
#	Apply	the	gate	to	the	data	
>	recompute(gs)	
	
#	Plot	the	gate	
>	autoplot(gs[[1]],	gate	=	"NotDebris")	
	
#	Check	gating	hierarchy	
>	plot(gs)	
	
#	Get	statistics	
>	gs_pop_get_stats(gs,	"NonDebris")	#	counts	
>	gs_pop_get_stats(gs,	"NonDebris",	type	=	"percent")	#	proportions	

44	

Manual	gating:	polygon	gate	
#	Define	the	vertices	of	the	polygon	
>	my_vertices	<-matrix(c(1,0.6,1,2,2.3,2.2,		
																																											25000,65000,120000,120000,75000,25000),		
																																											ncol=2,nrow=6)	
colnames(my_vertices)	<-	c("V450-A","SSC-A")	
	
#	Create	polygon	gate	"singlets"	
>	rg2		<-	polygonGate(boundaries=	my_vertices,		
																						filterId="CD3")	
	
#	Add	the	gate	to	the	GatingSet	
>	gs_pop_add(gs,	rg2,	parent	=	"NotDebris")	
	
#	Recompute	the	GatingSet	
>	recompute(gs)	
	
#	Check	
>	autoplot(gs[[1]],	gate	=	"CD3")	
>	plot(gs)	

45	

Manual	gating:	quadrant	gate	
#	Create	quadrant	gate	"CD4	CD8"	
	>	rg3		<-	quadGate("B710-A"=	1.5,		
																																			"R780-A"=	3,		
																																			filterId	=	"CD4	CD8")	
	
#	Add	the	gate	to	the	GatingSet	
	>	gs_pop_add(gs,	rg3,	parent	=	"CD3")	
	
#	Recompute	the	GatingSet	
	>	recompute(gs)	
	
#	Check	
	>	gs_get_pop_paths(gs)	
	
	
	
	
#	Plot	
	>	autoplot(gs[[1]],	gate	=	gs_get_pop_paths(gs)[4:7])	
	>	plot(gs)	

46	

FlowWorkspace:	other	utilities	

#	Rename	nodes	(gates)	
>	gs_pop_set_name(gs,"B710-A-R780-A+","CD8+")		
>	gs_pop_set_name(gs,"B710-A+R780-A-","CD4+")		
>	gs_pop_set_name(gs,"B710-A-R780-A-","DNT")	
>	gs_pop_set_name(gs,"B710-A+R780-A+","DPT")	
>	plot(gs)	
	
	
	
#	Remove	a	node	
>	gs_pop_remove(gs,	"DNT")		
>	plot(gs)	
	
	
#	Retrieve	the	flow	data	for	a	node	
>	fs_CD8	<-	gs_pop_get_data(gs,	"CD8+")	

•  Interactive	cytometry	gating	in	R	
•  Based	on	a	shiny	app	(web	application	using	R)	
•  Especially	geared	toward	wet-lab	cytometerists	looking	to	take	
advantage	of	R	without	having	a	lot	of	experience	

•  Uses	GatingSet	objects	
•  You	can	use	transformed	data,	but	flowGate	was	designed	to	
apply	desired	transformations	at	the	plotting	level	only	

47	

Interactive	gating	with	flowGate		

https://bioconductor.org/packages/release/bioc/html/flowGate.html		

48	

Interactive	gating	with	FlowGate		

#	Load	FCS	files	and	preprocess	
>	fs	<-	read.flowSet(path="course_datasets/flowWorspaceData/",	pattern	=	"*.fcs")	
	>	panel	<-	pData(parameters(fs[[1]]))		
	>	markerstotransf	<-	as.character(panel$name[!is.na(panel$desc)])		
	>	fs	<-	transFlowVS(fs,	channels	=	markerstotransf,		
																																				cofactors	=	rep(3000,length(markerstotransf)))	
	
#	Convert	to	GatingSet	
>	gs	<-	GatingSet(fs)	
	
	
	
#	Start	the	interactive	gating	
	>	gs_gate_interactive(gs,	
																				filterId	=	"NotDebris",	
																				dims	=	list("FSC-A",	"SSC-A"))	

1st:	chose	type	of	gate	

2nd	drag	pointer	to	create	gate	

3rd:	click	"done"	to	
create	gate	

49	

Interactive	gating	with	FlowGate		

#	Plot	the	data	with	the	new	gate		
	>	autoplot(gs[[1]],	gate	=	"NotDebris")		
	
	
	
	
	
	
	
	
#	Plot	hierarchy		
	>	plot(gs)	

Create	a	2-D	polygon	gate	

50	

Interactive	gating	with	FlowGate		

#	Create	a	polygon	gate	
	>	gs_gate_interactive(gs,	
																				filterId	=	"singlets",	
																				dims	=	list("FSC-A",	"FSC-H"),	
																				subset	=	"NotDebris")	
	
#	Check	
	>	autoplot(gs[[1]],	gate	=	"singlets")	

Click	on	the	vertices	

>	plot(gs)	

Create	a	1-D	span	gate	

51	

Interactive	gating	with	FlowGate		

#	Create	a	span	gate	
>	gs_gate_interactive(gs,		
																																							filterId	=	"CD3",		
																																							dims	=	"V450-A",		
																																							subset	=	"singlets")	
	
#	Check	the	gate	
	>	autoplot(gs[[1]],	gate	=	"CD3")	

Drag	a	window	

>	plot(gs)	

Create	a	2-D	quadrant	gate	

52	

Interactive	gating	with	FlowGate		

#	Create	a	quadrant	gate	
>	gs_gate_interactive(gs,		
																																							filterId	=	"CD4	CD8",		
																																							dims	=	c("B710-A",		
																																																							"R780-A"),		
																																							subset	=	"CD3")	
	
#	Check	
my_nodes	<-	gs_pop_get_children(gs,"CD3")	
autoplot(gs[[1]],	my_nodes)	

Select	the	origin	
of	the	quadrant	

>	plot(gs)	

Let’s practice – 9

53	

In	this	exercise	we	will		do	some	manual	gating	using	flowGate	and	data	from	
the	FR_FCM_Z3WR	dataset	of	the	FlowRepository.	

	
Create	a	new	script	in	which	you	will:	

1)  Create	a	flowSet	of	all	samples	within	the	/course_dataset/FR_FCM_Z3WR	folder	

2)  Perform	asinh	transformation	with	a	cofactor	of	3000	for	all	channels	not	labeled	with	"none",	

using	transFlowVS()	from	the	flowVS	package.	You	can	use	the	csv	file	with	the	panel	previously	

created	(/course_datasets/FR_FCM_Z3WR/panel_with_marker_classes.csv)	

3)  Convert	the	flowSet	to	a	GatingSet	

4)  Using	flowGate,	create	a	gating	hierarchy	according	to	the	scheme	depicted	in	the	following	slide.	

Don't	forget	to	check	your	gating	with	scatter	or	density	plots.		

5)  Perform	the	necessary	adjustements	so	that	your	gating	hierarchy	looks	like	the	one	depicted	in	the	

next	slide	

6)  What	is	the	percentage	of	CD8+	T	cells	among	T	cells	("CD3")	

Let’s practice – 9 : Gates

54	

Leukocytes	

(FSC-H,	SSC-H)	

CD3	
(BV510-A)	

CD4	CD8	
(BUV615-A,	BUV805-

A)	

Final	gating	
hierarchy	

55	

Working	with	gated	data	in	R	
												
	
	
								Automated	Gating	

04

•  Robust	Model-based	Clustering	of	Flow	Cytometry	Data	(Lo	et	
al.	2008)	

•  Identify	cell	populations	in	flow	cytometry	data	
•  Based	on	a	multivariate	t	mixture	model	with	Box-Cox	
transformation	

•  Options	for	estimating	the	number	of	clusters	when	it	is	
unknown	

•  Input	are	flowFrames	
56	

Automated	gating	with	flowClust		

https://www.bioconductor.org/packages/release/bioc/html/flowClust.html	

57	

Automated	gating	with	flowClust		

https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.20531		

58	

Automated	gating	with	flowClust		

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-10-145		

59	

Automated	gating	with	flowClust		

flowClust	function	
flowFrame	

markers	to	use	

number	of	iterations	

number	of	expected	
clusters	

Select	the	best	model	based	on	the	Bayesian	Information	Criterion	(BIC)	

60	

Automated	gating	with	flowClust		

flowClust	function	
Rule	of	identifying	outliers:		

	-	use	a	80%	quantile	(level)	
	-	assign	an	cellto	a	cluster	only	if	the	associated	

											posterior	probability	is	greater	than	z.cutoff	

•  Hierarchical	gating	pipeline	for	flow	cytometry	data	
•  Based	on	GatingSet	objects	
• Wide	variety	of	methods,	including	flowClust	
•  Automated	gating	using	a	gatingTemplate	(hierarchical	
gating	scheme)	

•  Possibility	of	step-by-step	gating	without	a	template	

61	

Automated	gating	with	openCyto		

https://bioconductor.org/packages/release/bioc/html/openCyto.html		

62	

Automated	gating	with	openCyto		

#	Load	example	gatingSet	from	FlowJo	workspace	(xml	file)	
>	library(CytoML)		
>	ws	<-	open_flowjo_xml("course_datasets/flowWorspaceData/manual.xml")		
>	gs_final	<-	flowjo_to_gatingset(ws,	name=	"T-cell",	subset	=1)		
	
#	Check	complete	gating	hierarchy	
>	plot(gs_final[[1]])	

Example	from	flowWorkspaceData	(gated	data)	

63	

Automated	gating	with	openCyto		

#	Plot	gates	
>	autoplot(gs_final[[1]])	

Example	from	flowWorkspaceData	(gated	data)	

64	

gatingTemplate	

label	of		
the	cell	

population	

which	side	(1-D)	
or	quadrant	(2-D)	

to	keep	

parent	
poulation	

dimensions	
used	for	
gating	

method	
used	for	
gating	

Arguments	
for	the	
method	

should	any	
preprocessing	
be	applied	

arguments	
for	

preprocessing	

collapse	all	
samples	into	one,	
gate	and	then	
replicate	across	

samples	 group	every	n	
samples	

https://bioconductor.org/packages/release/bioc/vignettes/openCyto/inst/doc/
HowToWriteCSVTemplate.html		

# Check the structure of the gatingTemplate	
> my_gt	<-	read.csv("course_datasets/flowWorkspaceData/tcell.csv")	
> view(my_gt)	

65	

gatingTemplate	

•  The	population	name	will	be	"nonDebris"	
•  The	parent	node	is	"root"	
•  The	gating	method	is	mindensity	
•  It	will	generate	a	scan	gate	on	FSC-A	and	keep	the	only	the	

positive	cells	

Example	of	a	1-D	scan	gate	

66	

gatingTemplate	

•  The	population	name	will	be	"singlets"	
•  The	parent	node	is	"nonDebris"	
•  It	will	use	FSC-A	and	FSC-H	
•  The	gating	method	is	singletGate	
•  It	will	generate	a	polygon	gate	on	FSC-A	and	FSC-H	to	keep	

only	the	singlets	

Example	of	a	singlet	gate	

67	

gatingTemplate	

•  The	population	name	will	be	"lymph"	
•  The	parent	node	is	"singlets"	
•  Use	the	method	from	flowClust	
•  It	will	generate	an	ellipsoid	gate	on	FSC-A	and	SSC-A	and	

split	the	cells	in	"peaks"	(high	density	areas)	
•  There	are	parameters	to	be	passed	to	flowClust:	apply	some	

preprocessing	before	gating;	it	should	identify	to	populations,	
centered	

Example	of	a	flowClust	gate	

68	

gatingTemplate	

•  Quadrant	gate	
•  Based	on	mindesity	for	determining	the	origin	of	the	

quadrant	
•  Specifies	that	population	CD4+/-CD8+/-	should	be	expanded	

into	6	cell	populations	
–  The	first	two	gates	are	span	gates	on	each	channel	(CD4	and	CD8)	
–  The	other	four	gates	are	rectangle	gates	that	correspond	to	the	four	

quadrants	in	the	2-D	projection	

Example	of	a	quadrant	gate	

69	

openCyto		

Create	the	gatingTemplate	from	the	csv	file	

#	Create	the	gatingTemplate	from	a	file	
	>	gt_tcell	<-	gatingTemplate("course_datasets/flowWorkspaceData/tcell.csv")	
	
#	Examine	the	gating	scheme	
	>	plot(gt_tcell)	

Load	the	raw	data	and	convert	to	gatingSet	

70	

openCyto:	run	the	gating	pipeline	

#	Load	the	preprocessed	but	ungated	data	
#	The	code	used	to	preprocess	this	data	is	avalable	in		
#	/Code_slides/Code_preprocessing_data_openCyto.R	
>	gs	<-	load_gs("course_datasets/flowWorspaceData/gs_preprocessed")	
	
#	Check	
>	plot(gs)	
	

Apply	the	gating	template	

#	Run	the	gating	
	>	gt_gating(gt_tcell,	gs)	

Check	the	gating	

71	

openCyto:	run	the	gating	pipeline	

#	Check	the	gating	
	>	plot(gs[[1]])	
	

Hide	populations	we	are	not	interested	in	

72	

openCyto	

#	Define	nodes	to	hide	
	>	nodesToHide		<-	c("cd8+",	"cd4+"	,	"cd4-cd8",	"cd4+cd8+"	,	"cd4+cd8-/HLA+",		
																																					"cd4+cd8-/CD38+"	,	"cd4-cd8+/HLA+",	"cd4-cd8+/CD38+"	,		
																																					"CD45_neg/CCR7_gate",	"cd4+cd8-/CD45_neg"	,		
																																					"cd4-cd8+/CCR7+",	"cd4-cd8+/CD45RA+")	
	
#	Apply	the	gs_pop_set_visibility()	function	to	the	nodes	to	hide	
	>	lapply(nodesToHide,	function(thisNode)	gs_pop_set_visibility(gs,	thisNode,	FALSE))	
	
#	Check	after	hiding	nodes		
>	plot(gs[[1]])	
	
	

Rename	some	populations	

73	

openCyto	

#	Rename	
	>	gs_pop_set_name(gs,"cd4+cd8-","cd4")		
	>	gs_pop_set_name(gs,"cd4-cd8+","cd8")	
	
#	Check	
>	plot(gs[[1]])	

	
	

Visualize	the	gates	with	ggcyto	

74	

openCyto	

	>	autoplot(gs[[1]])	

	
	

We	can	apply	each	automated	gating	step	using	the	same	fields	
as	in	the	template	

75	

openCyto:	gating	without	a	template	

	>	gs_add_gating_method(gs,		
																																																alias	=	"non-activated	cd4",		
																																																pop	=	"--",		
																																																parent	=	"cd4",		
																																																dims	=	"CD38,HLA",		
																																																gating_method	=	"tailgate")		
	
#	check	
>	plot(gs[[1]])	

	
	

mindensity	
Finds	the	minimum	as	the	cutpoint	between	positive	and	
negative	peaks	in	a	1-D	density	plot	

76	

openCyto:	overview	of	gating	methods	

•  Fast,	robust	and	easy	to	use	
•  For	markers	with	a	good	separation	between	+	and	–	peaks	
•  Needs	more	guidance	when	there	are	more	than	2	peaks	

https://bioconductor.org/packages/release/bioc/vignettes/openCyto/inst/doc/HowToAutoGating.html		

tailgate	
Gates	the	right	side	or	left	side	of	the	1-D	density	based	on	a	
cutpoint	(estimated)	in	the	tail	

77	

openCyto:	overview	of	gating	methods	

•  More	commonly	used	for	rare	populations	(peak	is	not	
prominent	enough)	

quantileGate	
Alternative	to	tailgate	and	it	determines	the	cutpoint	by	the	
events	quantile	

singletGate	
Use	the	area	vs	height	to	gate		
out	the	singlets	

78	

openCyto:	overview	of	gating	methods	

boundary	
Constructs	a	rectangle	gate		
from	input	range	(min	and	max)	

•  Used	for	filtering	out	very	extreme	signals	at	the	boundary	

79	

openCyto:	overview	of	gating	methods	

•  k=	how	many	cell	populations	are	expected	
•  target	=	center	of	target	population	(by	default	the	most	

prominent	cluster)	
•  quantile	=	how	large	the	ellipse	should	be	

flowClust	
1-D	or	2-D	automated	gating	methods	from	flowClust	(more	
details	in	?flowClust)		

Let’s practice – 10

80	

In	this	exercise	we	will	repeat	the	gating	previously	done	with	flowGate	on	the	data	
from	FR_FCM_Z3WR	of	the	FlowRepository,	but	this	time	using	automated	gating	
with	openCyto.	

	
Create	a	new	script	in	which	you	will:	

1)  Repeat	steps	1	to	4	from	previous	exercise	(loading	data	from	fcs	files	and	preprocessing).	You	can	

also	load	the	preprocessed	GatingSet	from	/course_dataset/FR_FCM_Z3WR/gs_preprocessed/.	

2)  Using	the		gs_add_gating_method()	function	(i.e.,	without	a	template),	create	a	gating	hierarchy	

according	to	the	scheme	depicted	in	the	following	slide.	Don't	forget	to	check	your	gating	

with	scatter	or	density	plots.		

3)  Do	necessary	adjustements	so	that	your	gating	hierarchy	looks	like	the	one	depicted	in	the	next	slide	

(hide	the	"BUV805-A+"	and	"BUV615-A+"	nodes	from	the	tree,	and	rename	the	CD4,	CD8,	DNT	and	

DPT	nodes)	

4)  Create	boxplots	showing	the	percentage	of	CD8+	T	cells	among	T	cells	("CD3")	as	a	function	of	time	

points	

Let’s practice – 10 : Gates

81	

Leukocytes	

(FSC-H,	SSC-H)	

flowClust	(K	=	3)	

CD4	CD8	
(BUV615-A,	BUV805-

A)	

gate_mindensity	

Final	gating	
hierarchy	

CD3	+	

(BV510-A)	

gate_mindensity	

82	

Working	with	gated	data	in	R	
												
	
	
								Phenotype	discovery	

04

•  Full	Annotation	Using	Shape-constrained	Trees	(FAUST)	
•  Machine-learning	method	
•  Unsupervised	discovery	and	annotation	of	phenotypes	in	
single-cell	data	from	flow	and	mass	cytometry	experiments	

•  Based	on	GatingSet	data	structures	(flowWorkspace)	

83	

Phenotype	discovery	and	annotation	with	FAUST		

https://github.com/RGLab/FAUST		

84	

Phenotype	discovery	and	annotation	with	FAUST		

https://www.cell.com/patterns/pdfExtended/S2666-3899(21)00234-8		

85	

Phenotype	discovery	and	annotation	with	FAUST		

Deriving	a	standardized	set	of	thresholds	for	informative	markers	

Green	et	al.,	Patterns	2021	

Concatenation	of	
samples	by	
experimental	
unit	(samples)	

�Annotation	forest		
(exhaustive	
collection	of	all	3-
marker	gating	
strategies)	

Depth	score:	how	
consistenly	a	
marker	separates	
into	subpopulations	

Select	high	scoring	markers	and	standardize	threshols	

86	

Phenotype	discovery	and	annotation	with	FAUST		

Deriving	a	standardized	set	of	thresholds	for	informative	markers	

Multiple	
discovery	
forests	for	each	
experimental	
unit	
												+	
Select	a	subset	of	
high-scoring	
leaves	(clusters)	
that	�jointly	
partition	the	
experimental	unit	
														+	
�Match	clusters	
across	
experimental	
units	

Main	output:	
Sample-by-phenotype	
cell	count	matrix	

There	are	three	vignettes	in	this	packages.	
•  faustIntro	is	a	quick	introduction	to	the	main	faust	
function	

•  faustTuning	has	a	discussion	about	how	to	tune	
different	parameters	available	in	the	package	

•  faustPFDA	provides	an	example	of	how	to	fit	a	
PFDA	(Phenotype	and	Functional	Differential	
Abundance)	model	to	the	output	count	matrix	

87	

Phenotype	discovery	and	annotation	with	FAUST		

A	FAUST	analysis	has	two	phases	:		
•  1st	Tuning	the	parameters:	marker	scoring,	selection,	
and	threshold	standardization	
(generateAnnotationThresholds)		

•  2nd	Phenotype	discovery:	once	the	standardized	
thresholds	have	been	approved	by	the	user	
(discoverPhenotypes)	

88	

FAUST	Workflow		

89	

Tuning	the	parameters	

>	generateAnnotationThresholds(gatingSet	=	gs,	
																																																												startingCellPop		=	"root",	
																																																												projectPath		=	"course_datasets/FAUST/",	
																																																												plottingDevice		=	"png",	
																																																												depthScoreThreshold	=	0.85,	
																																																												selectionQuantile			=	0.5,	

	 	 	 	 	 									activeChannels						=	c("V1","V4","V5"))	
	

Threshold to use
for the depth score
criterium

Once	complete,	a	faustData	directory	will	be	created	
inside	the	project	path,	with	a	sub-directory	
called	plotData	

Threshold to use
for the quantile
criterium markers to use (“type”)

90	

Tuning	the	parameters	-	output	

scoreLines.png	

quantiles of the depth score 	

ob
se

rv
ed

 d
ep

th
-s

co
re

 a
t

qu
an

til
e	

Solidly-colored	
markers	=	
markers	selected	
for	analysis	

threshold	for	the	
parameter	
selectionQuantile	

Threshold	for	
the	parameter	
depthScore	

All markers with depth score above the depthScore threshold at the
specified selectionQuantile will be included for phenotype discovery	

Dashed-colored	
markers	=	
markers	not	
selected	for	
analysis	

91	

Tuning	the	parameters	-	output	

hist_V1_ab_1.png	
annotated	
thresholds	
for	each	
sample	

These plots can be useful in checking for batch effects or for other technical
effects that may affect a subset of samples in large experiments.	

92	

Discovering	phenotypes	

>	discoverPhenotypes(gatingSet			=	gs,	
																																								projectPath	=	"course_datasets/FAUST/",	
																																								threadNum			=	4)	
	

#	Alternative	:	run	the	faust	function	(wraper	around	the	two	previous	functions)	
>	faust(gatingSet	=	gs,	
														startingCellPop	=	"root",	
														depthScoreThreshold	=	0.85,	
														selectionQuantile			=	0.5,	
														projectPath	=	"course_datasets/FAUST/",	
														activeChannels						=	c("V1","V4","V5"),	
														annotationsApproved	=	TRUE)	
	

FALSE by default (encourage the user to review the proposed parameter
values).
When set to TRUE, indicates the user wants to use the proposed parameters.

If you want to run the FAUST method totally unsupervised, set this
parameter to true before running the faust function.	

93	

Examine	output:	annotated	count	matrix	

#	Annotated	count	matrix	
	>	count_df	<-	readRDS("course_datasets/FAUST/faustData/faustCountMatrix.rds")	
	>	count_df	<-	as.data.frame(count_df)	
	>	count_df	
	
	

samples	

discovered	cell	populations	

number	of	cells	in	a	sample	that	belong	to	a	discovered	cell	population	

•  The	columns	are	annotated	by	a	
selected	subset	of	markers	used	in	
conducting	the	experiment.	

•  The	annotations	define,	in	terms	
of	these	markers,	the	phenotypes	
of	all	cell	populations	discovered	
by	the	pipeline.	

94	

Examine	output:	UMAP	with	phenotypes	

#	Create	DF	with	embedings	(UMAP)	
	>	annoEmbed	<-		makeAnnotationEmbedding(projectPath="course_datasets/FAUST/",	
																																																																																				sampleNameVec=	pData(gs)$name)	
	
#	plot	the	UMAP	
	>	ggplot(annoEmbed,	
																	aes(x=umapX,	
																								y=umapY,	
																								color=faustLabels))+	
							geom_point()+	
							theme_classic()+	
							xlab("Annotation	Embedding	X")+	
							ylab("Annotation	Embedding	Y")+	
							facet_grid(vars(sampleOfOrigin))+	
							theme(legend.position="bottom")	
	

