
	
	Analysis	of	flow	cytometry	data	with	R	

Training	for	life	scientists		

João	Lourenço,	Tania	Wyss	&	Nadine	Fournier	
Translational	Data	Science	–	Facility	
SIB	Swiss	Institute	of	Bioinformatics	

1

The	Translational	Data	Science	Facility	

For	core	facility	service	inquiry:	nadine.fournier@sib.swiss	
https://agora-cancer.ch/scientific-platforms/translational-data-science-facility/	
https://www.sib.swiss/raphael-gottardo-group	

-  Part	of	the	SIB	Swiss	Institute	of	Bioinformatics	
-  Located	at	the	AGORA	Cancer	Research	Center	in	Lausanne	
-  Provides	statistics,	bioinformatics	and	computational	expertise	to	molecular	

biology	and	applied	research	labs.		
-  Participates	in	fundamental	and	translational	research	by	providing	expertise	in	

data	analysis	of	single-cell	and	bulk	multi-omics,	spatial	transcriptomics,	flow	
cytometry,	etc	

	

2

Tell	us	about	yourself	!	

Share	about	yourself	and	your	research,	
experience	with	programming,	etc.	

Photo	by	Scott	Graham,	Unsplash	Photo	by	National	Cancer	Institute,	Unsplash	

3

Course	material	

1.	Website	
https://taniawyss.github.io/flow-cytometry-analysis-with-R/	
	
	
	
	
	
	
	
	
	
	
	
2.	Google	doc	for	exchange	of	additional	information	and	
questions	

4

Day	1	-	morning	

Outline & Schedule

Introduction	
(9:00	–	10:30)	
10:30	–	10:50	Coffee	break	
	

01

Starting	to	work	with	flow	cytometry	data	
(10:50	–	12:30)	
	

02

5

Automated	Quality	Control	
Exercises	
(15:50	–	16:50)	
	
16:50		-		17:00				Feedback	and	end	of	day	
	

Day	1		-	afternoon	

Outline & Schedule

04

Transformation	
(13:30	–	15:30)	
15:30	-15:50		Coffee	break	
	
	

03

6

Dimensionality	reduction	

Day	2	

05

Examples and exercises are integrated in the
chapters

Outline & Schedule

Clustering	and	annotation	06

07 Differential	testing	

7

Questions	and	Exercises	

Feel	free	to	interrupt	with	questions	by	asking	them	directly	
or	raising	your	(virtual)	hand.	
	
Use	the	Q&A	in	Google	Doc	(or	Zoom	chat),	we	will	provide	
answers.	
	
Add	a											when	you	are	done	with	the	current	exercise.	
	
Exercises	in	R:	

We	will	try	to	debug	as	much	as	possible	
We	are	happy	if	you	share	your	results	or	alternative	
code!	

8

Flow	cytometry	data	analysis	with	R	is	vast.	
We	will	cover	a	simple	workflow	to	allow	you	to:	

	
�  get	a	basic	understanding	of	an	analysis	workflow	

�  perform	some	analysis	using	R	

�  give	you	the	tools	to	expand	your	workflows	according	
to	your	needs	

	
This	course	is	only	the	first	step	in	your								journey!	

Course	Content	

10

Introduction	01

10

Why	use	R	for	flow	cytometry	data	?	

Types	of	flow	cytometry	data:	
-  conventional	flow:	15-20	markers	per	panel	
-  spectral	:	up	to	40	markers	per	panel,	deals	with	cell	autofluorescence	=>	complexity	

of	the	analysis	if	using	2D	manual	gating	strategy	
-  R	can	facilitate	the	analysis	of	datasets	with	many	markers	

ht
tp
s:
//
cy
te
kb
io
.c
om

/p
ag
es
/a
ur
or
a	

11

-  Commercially	available	solutions	:	Cytek’s	SpectroFlo	software,	OMIQ	
-  Online	solutions:	data	privacy	issues?	

	=>	R	is	free	and	open	source	
-  Allows	reproducibility	and	transparency,	everything	is	hard-coded.		
-  R	offers	capabilities	to	perform	analyses	beyond	the	ones	of	the	standard	data	analysis	

software	via	development	of	packages	by	the	R	community.	
-  Generate	PDF	or	HTML	reports	

-  Analysis with R may be different than the usual 2D gating mind-set.	

Why	use	R	for	flow	cytometry	data	?	

Availability	of	R	packages	
-  CRAN	
-  Bioconductor	
-  (github)	

12

•  Workflow	based	on	
	

14

Spectral	flow	cytometry	analysis	workflow	

https://doi.org/10.3389/fimmu.2021.768113	
Provide	R	code	to	perform	the	proposed	workflow	

Suggested	workflow:	Figure	1,	den	Braanker	et	al	

14

Simplified	workflow	
presented	in	day	1	and	2	

Data	
acquisition	

Planning	and	
Preparation	

Data	analysis	in	R	
	
	
	
	
	
	
	
	
	
	
	
	
	

Preprocessing	
(formatting,	
cleaning,	QC)	

Data	Representation	(plots,	tables)	

Analysis	
(dimensionality	

reduction,	
clustering)	

Exploration	

Communicate	
(reports)	

Import		

Export	
Results	

Manual	
analysis		

(QC,	gating)	

Sub-sampling	

15

1.	Manual	QC	check	and	gating	
Initial	recommendations	

-  Well	designed	panel	
-  Well	designed	single-stain	controls	
-  Manual	quality	checks	and	gating	of	each	sample:	time	gate,	select	single	cells,	

viable	cells,	cells	of	interest.					

-  We	will	start	the	basic	workflow	using	fcs	files	exported	from	FlowJo	after	QC	
checks	and	initial	gating.	

16

R	environment	and	cloud	

18

Github	repository	

In	a	Nutshell	

52

	
	
-  We	present	some	useful	packages	to	build	a	basic	
workflow,	but	“there	is	more	than	one	way	to	do	it”!	

-  We	encourage	you	to	search	for	packages	that	have	
functions	that	could	suit	your	needs.	

Starting	to	work	with	flow	cytometry	
data	

02

20

Workflow	and	source	of	flow	cytometry	dataset	

23
https://doi.org/10.3389/fimmu.2021.768113	

23

Example	of	flow	cytometry	dataset	

•  Publicly	available	through	the	FlowRepository	database	at		

https://flowrepository.org/,	using	repository	ID	FR-FCM-Z4KT

•  Data	from	31-color	spectral	flow	cytometry	on	peripheral	

blood	mononuclear	cells	(PBMCs)	from	healthy	controls	

•  �Data	were	acquired	and	unmixed	using	SpectroFlo®	v2.2.0.3	

software	(Cytek	Biosciences,	Fremont,	California,	USA)	

•  Resulting	unmixed	fcs	files	were	pre-processed	using	manual	

gating	in	FlowJo	v10.7	software	(BD	Biosciences,	San	Jose,	

California,	USA)		

•  Data	standard	for	reading	and	writing	data	from	flow	
cytometry	experiments	

•  File	exported	from	the	cytometer’s	acquisition	software	
•  Versions:	FCS1.o	(1984),	FCS	2.0	(1990),	FCS	3.0	(1997),	FCS	3.1	

(2010),		
•  File	Format	(main	segments):	

•  HEADER	segment	(ASCII	text):	version,	…	
•  TEXT	segment	(ASCII	text):	keywords	and	values	which	

describe	the	data	format	and	encoding	
•  	DATA	segment	(binary):	contains	the	actual	

measurements	
•  Others	…	
	

Flow	Cytometry	Standard	(FCS)	files	

23

•  Array	(matrix)	with	fluorescence	and	scatter	channels	
represented	in	columns	and	individual	«events»	(cells…)	
forming	the	rows	
	

Data	structure	

23

Ev
en

ts
	

Channels	

Intensities	

•  https://bioconductor.org/packages/release/bioc/html/flowCore.html	
•  Provides data structures and basic functions to deal with

flow cytometry data in R
•  Installation:

•  Vignette
https://bioconductor.org/packages/release/bioc/vignettes/
flowCore/inst/doc/HowTo-flowCore.pdf

flowCore	R	Package 
	

23

•  A	flowFrame	is	the	basic	unit	of	manipulation	
•  Corresponds	to	a	single	FCS	file	

Reading	an	FCS	file	into	a	flowFrame	

The	function	read.FCS()	allows	to	read	a	single	FCS	file	into	R.			Example:	
>  FCS_file <- read.FCS(
 filename = "course_datasets/FR_FCM_Z4KT/

T_cells_REU270_alive_T cells.fcs",

 transformation = FALSE,

 truncate_max_range = FALSE)

•  Important	arguments:	
•  filename	is	the	path	to	the	fcs	file	
•  transformation	specifies	the	type	of	transformation	to	be	applied.	When	
set	to	FALSE,	no	transformation	is	applied.	

•  truncate_max_range.	 Set	 to	 FALSE	 to	 avoid	 truncating	 the	 extreme	 positive	
value	to	the	instrument	measurement	range.	

26

>	help(flowFrame)	

What	is	a	flowFrame	object?	

27

•  In	R,	objects	such	as	flowFrames	are	collections	of	data	(variables)	
and	methods	(functions).		

•  They	belong	to	a	given	class	(a	blueprint	for	that	object)		
•  Member	variables	in	R	objects	are	called	slots.	There	are	three	slots	

in	a	flowFrame:	exprs,	parameters	and	description	

What	is	a	flowFrame	object	?	

28

Summarize	a	flowFrame	

23

>  summary(FCS_file)

…	

>  FCS_file

•  Matrix	of	expression	values	(as	a	matrix)	

Access	data	elements	in	a	flowFrame	

>  FCS_file@exprs >  exprs(FCS_file) or	

>  colnames(FCS_file)

•  To	access	data:	use	the	@	operator	or	a	method	(function)	

30

Access	data	elements	in	a	flowFrame	

>  pData(FCS_file@parameters) or	 > pData(parameters(FCS_file))

•  Metadata	(panel)	

31

How	to	replace	the	channel	names	by	the	antigen	names	
in	the	expression	matrix	

>  panel <- pData(FCS_file@parameters)

>  pData(FCS_file@parameters)$channel <- panel$name

>  colnames(FCS_file)[!is.na(panel$desc)] <- panel$desc[!
is.na(panel$desc)]

>  head(exprs(FCS_file)[,10:15])

•  Copy	the	metadata	to	a	data	frame	

•  Copy	the	names	to	a	new	column	

•  Replace	the	names	by	the	antigens	

32

•  A	flowSet	is	a	collection	of	flowFrame	
•  Convenient	way	to	apply	methods	to	all	flowFrame	simultaneously	

Reading	a	list	of	FCS	files	into	a	flowSet	

The	function	read.flowSet()	allows	to	read	several	FCS	files	in	a	given	directory.	

Example:	
>  fcs_data <- read.flowSet(path="course_datasets/FR_FCM_Z4KT/",
 pattern="*.fcs",

 transformation = FALSE,

 truncate_max_range = FALSE)

•  Important	arguments:	
•  path	is	the	path	to	the	folder	containing	the	FCS	files	
•  pattern	sets	which	files	to	read	(*	is	a	wildcard	replacing	the	file	names)	

You can coerce a list of flowFrames
into a FlowSet, but is less convenient

33

>	help(flowSet)	

Slots	in	a	flowSet	

34

Methods	applied	to	a	flowSet		
List	sample	names	

23

>  sampleNames(fcs_data)

>  sampleNames(fcs_data) <- c("REU267","REU268","REU269","REU270",
 "REU271_12_july","REU271_13_april",
 "REU271_14_april","REU271_7_apr",

 "REU271_9_april","REU271","REU272_12_july",

 "REU272_13_april","REU272_14_april",

 "REU272_7_apr","REU272_9_apri","REU272")

We	can	change	the	sample	names:	

Phenotypic	data	

23

•  Extract	/	replace	the	data	frame	(or	columns	thereof)	containing	
actual	phenotypic	information	from	the	phenoData	slot	

>  pData(fcs_data)	

Add	a	new	column	to	the	phenotypic	data	

23

>  pData(fcs_data)$gender	<-	c(rep("male",8),	rep("female",8))	
>  pData(fcs_data)	#	or	fcs_data@phenoData@data	

Manipulating	a	flowSet	

23

•  Extract	a	flowFrame	from	a	flowSet	object	using	the	[[operator		

>  fcs_data[[1]]	

•  Create	a	new	flowSet	object	by	subsetting	with	the	[operator		

>  fcs_data[1:5]	

Manipulating	a	flowSet	

23

•  Subset	a		flowSet	based	on	a	condition	

>  fcs_data_males <- fcs_data[pData(fcs_data)$gender=="male"]
>  fcs_data_females <- subset(fcs_data, pData(fcs_data)$gender=="female”)

•  Split	the	flowSet	based	on	a	condition		
>  fcs_data_split <- split(fcs_data, pData(fcs_data)$gender)
>  names(fcs_data_split)
[1] "female" "male"

Manipulating	a	flowSet	

23

•  Combine	several	flowSet	objects	(or	flowSets	and	flowFrames)	

>  fcs_data_combined <-
 rbind2(fcs_data_split$female, fcs_data_split$male)

>  pData(fcs_data_combined)

Visualizing	Cytometry	Data	with	the	ggcyto	Package	

23

•  https://www.bioconductor.org/packages/release/bioc/html/ggcyto.html	
•  Interface to the ggplot2 graphics system
•  Installation:

•  Vignettes
https://www.bioconductor.org/packages/release/bioc/
vignettes/ggcyto/inst/doc/Top_features_of_ggcyto.html
https://www.bioconductor.org/packages/release/bioc/
vignettes/ggcyto/inst/doc/ggcyto.flowSet.html

Visualizing	a	single	flowFrame	within	a	flowSet	

23

The	function	autoplot()	can	be	used	to	create	a	bivariate	density	plot.				

Example:	
>  autoplot(object = fcs_data[[5]], x=”FSC-H", y="FJComp-BUV496-A",

bins = 2^7)

•  bins	 sets	 the	 granularity	
of	 the	 plot.	 The	 higher	
the	 number	 of	 bins,	 the	
finer	the	granularity	

Visualizing	a	single	flowFrame		within	a	flowSet	

23

Similarly,	to	get	a	univariate	densityplot:	

	
>  autoplot(object = fcs_data[[5]], x="FSC-H")

In-line	transformation	

23

	
>  autoplot(fcs_data[[5]],
 x="FJComp-BUV496-A")

Use	a	different	scale	for	the	data		
	
>  autoplot(fcs_data[[5]],

x="FJComp-BUV496-A") +
scale_x_flowjo_fasinh()

Original	scale	(raw	intensity	measurements)	 flowJo	inverse	hyperbolic	sine	

In-line	transformation	

23

Example	in	a	bivariate	density	plot.		
>  autoplot(object = fcs_data[[5]], x=”FSC-H", y="FJComp-BUV496-A",

bins = 2^7) + scale_y_flowjo_fasinh()

Original	scale	
flowJo	inverse	hyperbolic	sine	

on	the	y	axis	

Visualizing	a	flowSet	

23

The	syntax	is	basically	the	same	for	flowSet	objects,	with	the	output	now	being	

a	grid	of	plots	corresponding	to	each	flowFrame.	Example:	
>  autoplot(object = fcs_data[10:15], x="FSC-H", y="SSC-H", bins =

2^7)

Let’s	practice	–	1	
In	this	exercise	we	will	use	a	36-color	spectral	flow	cytometry	dataset	from	a	study	
performed	in	the	context	of	Covid-19	research.	Only	a	subset	from	5	healthy	donors	
will	be	used.	For	each	healthy	donor,	there	are	three	time	points,	as	indicated	in	FCS	
file	names.	Data	was	downloaded	through	the	Flow	Repository	database	(FR-FCM-
Z3WR)	at	https://flowrepository.org/id/FR-FCM-Z3WR.	FCS	files	were	pre-gated	on	
live	CD3+CD19-	T	cells	in	FlowJo.	
	
Create	a	new	script	in	which	you	will	
1) 	Import	the	FCS	files	(course_datasets/FR_FCM_Z3WR/)	into	a	flowSet.	Do	not	
transform	or	truncate	the	values	

2) 	Create	a	data	frame	with	the	list	of	channels	and	corresponding	antigens,	and	
view	it	.	Hint:	get	the	antigens	from	the	parameters	of	one	of	the	flowFrame	in	the	
set	

3) 	Add	a	new	column	to	the	phenotypic	data	with	the	time	point	of	the	sample.	View	
the	phenotypic	data	

4) Convert	the	channel	names	in	the	expression	matrices	to	the	corresponding	
antigen	names	(where	applicable).	

5) 	Create	a	bivariate	density	plot	showing	«FSC-H»	against	«HLA-DR»	for	all	samples	
from	day	0.	Apply	a	flowJo	inverse	hyperbolic	sine	scale	to	the	y	axis	(«HLA-DR»)	

47

•  FCS	files	include	the	cell	measurements	and	metadata	

•  FCS	files	can	be	imported	into	the	R	environment	with	the	

flowCore	package.	�	

•  flowCore	provides	data	structures,	such	as	flowFrame	and	

flowSet,	and	basic	functions	to	deal	with	flow	cytometry	

data.	

•  The	ggcyto	package	implements	methods	for	visualization	

of	flowFrame	and	flowSet	objects,	including	an	interface	to	

the	ggplot2	graphics	system	
	

In	a	nutshell	

48

Transformation	03

49

Construct	a	data	frame	of	the	panel	

> fcs_colname <- colnames(fcs_data)

> antigen <- pData(parameters(fcs_data[[1]]))$desc

> panel <- data.frame(fcs_colname, antigen, marker_class,

 row.names = NULL)

Retrieve	the	list	of	channels	and	corresponding	antigens	

Put	everything	together	in	a	data	frame	

Marker	classes:	
-	Cell	“type”	markers	(used	to	define	clusters	representing	cell	populations)	

-	Cell	"state”	markers	(used	for	testing	differential	states	within	cell	populations)	
	> marker_class[32] <- "state”
> marker_class <- factor(marker_class,

 levels=c("type","state","none"))

> marker_class <- rep("none", ncol(fcs_data[[1]]))

> marker_class[c(8:31,33:36,38)] <- "type”

50

Transformation	functions	

51

Inverse	hyperbolic	sine	transformation	(arcsinh)	
	
	

52

Cofactor:		
scale	argument	that	
controls	the	
behaviour	of	the	
function	around	
zero	

Log-like	Log-like	 linear	
Ray	and	Pyne	2021	Adapted	from	Folcarelli	et	al.	2021	

Arcsinh	transformation	with	flowVS	

•  Variance	stabilization	(VS)	method	based	on	maximum	likelihood	(ML)	estimation	
•  Built	on	top	of	arcsinh	
•  Stabilizes	the	within-population	variances	for	each	channel	

•  Bartlett’s	statistic	(Y	axis)	is	computed	
from	density	peaks	after	data	is	
transformed	by	different	cofactors	(X	
axos)	

•  An	optimum	cofactor	is	obtained	where	
the	statistic	is	minimum		

https://bioconductor.org/packages/release/bioc/html/flowVS.html	

53

Downsample	the	data	for	parameter	estimation	

Define	a	function	that	downsamples	all	flowFrame	objects	within	a	
flowSet	
> Downsampling_flowSet <- function(x, samplesize , replace=TRUE,
prob=NULL){

 if(missing(samplesize))

 samplesize <- min(flowCore::fsApply(x,nrow))

 flowCore::fsApply(x, function(ff){

 i <- sample(nrow(ff), size = samplesize, replace=replace, prob)

 ff[i,]

 })

}

> fcs_data_small <- Downsampling_flowSet(x=fcs_data,

 samplesize = 2000)

Create	a	downsampled	flowSet	

54

Arcsinh	transformation	with	flowVS	

> cofactors <- estParamFlowVS(fcs_data_small, channels=markerstotransf)

Estimate	cofactors	based	on	the	downsampled	data	

Select	markers	to	be	transformed		
> markerstotransf <- panel$fcs_colname[panel$marker_class!=“none”]

55

Arcsinh	transformation	with	flowVS	

Transform	the	original	data	
> fcs_transform <- transFlowVS(fcs_data,

 channels = markerstotransf,
 cofactors)

> cofactordata <- data.frame(markerstotransf, cofactors)

> head(cofactordata)

Check	cofactors	

56

FlowViz:	Visualization	for	flow	cytometry	

https://bioconductor.org/packages/release/bioc/html/flowViz.html		

> densityplot(~`FJComp-BUV496-A`, fcs_data) # before

Check	transformation	with	density	plots	

> densityplot(~`FJComp-BUV496-A`, fcs_transform) # after

before																														after	

57

Alternative:	Arcsinh	transformation	with	fixed	(supplied)	
cofactors	

Create	a	vector	of	cofactors	
> cofactor <- 3000

> l <- length(markerstotransf)

> cofactors <- rep(cofactor, l)

Transform	
> fcs_transform <- transFlowVS(fcs_data,

 channels = markerstotransf,
 cofactors)

> densityplot(~`FJComp-BUV496-A`, fcs_data) # before

Check	transformation	with	density	plots	

> densityplot(~`FJComp-BUV496-A`, fcs_transform) # after

58

> densityplot(~`FJComp-BUV496-A`, fcs_data) # before

Check	transformation	with	density	plots	

> densityplot(~`FJComp-BUV496-A`, fcs_transform) # after

before																														after	

Alternative:	Arcsinh	transformation	with	fixed	(supplied)	
cofactors	

59

Logicle	transformation	

60

W:		Linearization	width.	Slope	of	transformation	at	zero.	
T:				Top	of	the	scale	data	(t	=	4E6	in	the	case	of	spectral	flow	cytometry	data)		
M:		With	of	the	transformed	data	
A:			Additional	negative	range	to	be	included	

Parks	et	al.	2006c	

set by experimental circumstances 	

estimated from the data	

Logicle	transformation	with	flowCore		

61

> fcs_list <- list()

> for(i in 1:16){

 ff <- fcs_data[[i]]

 algcl <- estimateLogicle(ff,

 channels = markerstotransform,

 m=6,

 t = 4E6)

 fcs_list[[i]] <- transform(ff, algcl)

}

> names(fcs_list) <- sampleNames(fcs_data)	
		>		fcs_transformed <- as(fcs_list, "flowSet")	

Estimate	parameters	and	transform		

Recreate	the	flowSet	from	the	list	of	flowFrames	

> densityplot(~`FJComp-BUV496-A`, fcs_data) # before

Check	transformation	with	density	plots	

> densityplot(~`FJComp-BUV496-A`, fcs_transform) # after

before																														after	

Logicle	transformation	with	flowCore		

62

Let’s	practice	–	2		
We	will	use	the	flowSet	created	in	the	previous	exercise,	and	transform	the	data	
using	two	sets	of	cofactors:	fixed	and	estimated	using	a	function	from	the	flowVS	
package.	

Create	a	new	script	in	which	you	will	

1) 	Load	the	flowSet	object	saved	at	the	end	of	the	previous	exercise		

2) 	Read	the	«course_datasets/FR_FCM_Z3WR/panel.csv»	file	into	a	data	frame.	The	

last	column	contains	the	marker	classes	(«none»,	«type»	or	«state»)	

3) 	Downsample	the	flowSet	to	2’000	cells	per	flowFrame	(you	can	find	the	

downsampling	function	in	the	«course_datasets/

function_for_downsampling_flowSets.R»	file)	

4) 	Transform	the	«type»	and	«state»	markers	using	both	Logicle	(hint:	use	the	

downsampled	flowSet	for	parameter	estimation;	start	with	default	parameters,	

and	adjust	if	needed)	and	arcsinh	transformations	(fixed	cofactors	of	3000).	

5) 	Compare	the	transformation	in	the	first	flowFrame	using	density	plots.		
63

Automated	Quality	Control	04

64

Automated	Quality	Control	with	flowAI	

https://bioconductor.org/packages/release/bioc/html/flowAI.html		

•  QC	can	be	performed		
•  automatically	using	flow_auto_qc()		
•  interactively	using	flow_iQC()	

•  Evaluates	three	properties:		
•  flow	rate	(FR)		
•  signal	acquisition	(FS)		
•  dynamic	range	(FM)		

•  Generates	a	report	for	each	FCS	file	

> fcs_QC <- flow_auto_qc(fcs_transform,

 folder_results = “flowAI_results”)

Or,	if	pre-gated	time	gate,	skip	FR	step	
> fcs_QC <- flow_auto_qc(fcs_transform, remove_from = "FS_FM")

Run	flowAI	with	default	parameters	

Select from which of the three steps the
anomalies have to be excluded	

65

Monaco	et	al.,	Bioinformatics	(2016)	

Tabular	report	(Qcmini.txt)	

66

Example	of	a	flowAI	report	

67

Example	of	a	flowAI	report	

68

Flow	rate	check	(FR)	

•  This	plot	reconstructs	the	flow	rate	with	a	resolution	of	1/10	of	a	second	
•  Anomalies	are	circled	in	green	
•  alphaR:	the	level	of	statistical	significance	used	to	accept	anomalies	

(default	value	is	0.01).	Decrease	the	value	to	make	check	less	sensitive	

https://bioconductor.org/packages/release/bioc/vignettes/flowAI/inst/doc/flowAI.html	

Example	of	a	flowAI	report	

69

Signals	acquisition	
check	(FS)	

	
The	mean	and	standard	
deviation	of	the	medians	
should	remain	constant	

	

https://bioconductor.org/packages/release/bioc/vignettes/flowAI/inst/doc/flowAI.html	

Median	of	the	signal		
per	bin	of	events	

The	region	that	passed	the	QC	is	highlighted	in	yellow	

Detected	change	point	

pen_values:	Penalty for the changepoint detection algorithm (default is 500).
The higher the penalty value the less strict is the detection of the anomalies.

Example	of	a	flowAI	report	

70

Dynamic	range	check	(FM)	

•  Upper	limit:	the	maximum	value	of	the	dynamic	range	(maximum	pre-set	by	the	
manufacturer)	

•  Lower	limit:	values	below	zero	for	the	scatter	channels	and	all	the	outliers	in	the	
negative	range	for	the	immunofluorescence	channels	

https://bioconductor.org/packages/release/bioc/vignettes/flowAI/inst/doc/flowAI.html	

Frequency of
events
removed	

Same bins as in signal acquisition check	

Let’s	practice	–	3		
We	will	continue	with	the	Logicle	transformed	flowSet	created	in	the	last	exercise,	
and	apply	the	flowAI	quality	control	algorithm	to	remove	low	quality	cells.	
	
Create	a	new	script	in	which	you	will	

1) 	Load	the	flowSet	object	from	exercice	2	(«/course_datasets/FR_FCM_Z3WR/

fcs_transform_logicle.RData»)	

2) 	Run	the	flowAI	quality	control	algorithm.	Set	the	output	directory	to	

«course_datasets/FR_FCM_Z3WR/flowAI_res»	

3) Load	the	«Qcmini.txt»	report	created	by	flowAI	and	view	it.	

4) 	Check	the	html	report	for	sample	1A9B20_0.	What	happened	?	

71

Automatic	Quality	Control	with	PeacoQC		

https://bioconductor.org/packages/release/bioc/html/PeacoQC.html		

•  �Peak	Extraction	And	Cleaning	Oriented	Quality	Control	(PeacoQC),	
•  Tool	for	pre-processing	(e.g.	transformation)	and	quality	control	
•  Removes	outliers	and	unstable	events	introduced	due	to	e.g.	clogs,	speed	

changes	etc.		
•  Includes	functions	for	visualising	QC	results	

> peacoqc_res <- PeacoQC(ff=ff,

 channels=channels,

 determine_good_cells="all",

 save_fcs=TRUE,

 plot=TRUE,

 output_directory = "PeacoQC")

Run	PeacoQC	and	save	the	cleaned	flowframe	as	an	fcs	file	

The	filtered	flowFrame	is	stored	in	peacoqc_res$FinalFF	and	can	be	used	for	
further	analysis	

72

Automatic	Quality	Control	with	PeacoQC		

�Two	Steps:	
•  Peak	detection:	samples	are	binned	and	density	peaks	are	determined	for	

every	marker	and	clustered	
•  Outlier	removal:	filter	based	on	an	Isolation	Tree	(IT)	and	remove	peaks	

based	on	their	MAD	distance	and	connect	disjointed	regions	

Median Absolute
Deviations (MAD).
Lower values	make	
the	algorithm	more	
strict	

�Gain limit of the
isolation tree
(IT_limit).
�Lower	values	make	
the	algorithm	more	
strict	

73

Automatic	Quality	Control	with	PeacoQC		

> peacoQC_res <- PeacoQC(ff= fcs_transform[[1]],

 channels=markerstotransf,

 determine_good_cells = "all",

 save_fcs = FALSE,

 plot=TRUE,

 output_directory = "PeacoQCresults",

 IT_limit = 0.65,

 MAD=8)

Run	peacoQC	first	on	one	file	to	optimize	the	parameters		

74

Example	of	PeacoQC	report	and	plots	

Filename	
Nr.	Measurements	
before	cleaning	

Nr.	Measurements	
after	cleaning	 %	Full	analysis	

Analysis	
by	

%	IT	
analysis	

%	MAD	
analysis	

%	
Consecutive	
cells	 MAD	 IT	limit	

Consecutive	
bins	 Events	per	bin	Increasing/Decreasing	channel	

TF_	062CD8.fcs	 232632	 230500	 0.91646893	all	 0	 0.91646893	 0	 5	 0.55	 5	 1000	No	increasing	or	decreasing	effect	

TF_	0B943B_0.fcs	 65136	 59000	 9.42028986	all	 0	 9.42028986	 0	 5	 0.55	 5	 500	No	increasing	or	decreasing	effect	

TF_	0B943B_14.fcs	 142496	 132000	 7.36582079	all	 0	 7.36582079	 0	 5	 0.55	 5	 1000	No	increasing	or	decreasing	effect	

TF_	0B943B_3.fcs	 51600	 48250	 6.49224806	all	 0	 6.49224806	 0	 5	 0.55	 5	 500	No	increasing	or	decreasing	effect	

TF_	22CBD6.fcs	 286160	 264000	 7.74391949	all	 0	 7.74391949	 0	 5	 0.55	 5	 1500	No	increasing	or	decreasing	effect	

TF_	24305F_1.fcs	 138144	 135000	 2.27588603	all	 0	 2.27588603	 0	 5	 0.55	 5	 1000	No	increasing	or	decreasing	effect	

TF_	2AD75E_14.fcs	 108416	 107750	 0.61430047	all	 0	 0.61430047	 0	 5	 0.55	 5	 500	No	increasing	or	decreasing	effect	

TF_	2AD75E_7.fcs	 168392	 155000	 7.95287187	all	 0	 7.06209321	 1.4846311	 5	 0.55	 5	 1000	No	increasing	or	decreasing	effect	

TF_	36EA16.fcs	 91896	 84750	 7.77618177	all	 0	 7.77618177	 0	 5	 0.55	 5	 500	No	increasing	or	decreasing	effect	

75

Automatic	Quality	Control	with	PeacoQC		

> for(i in 1:16){

 peacoqc_res <- PeacoQC(fcs_transform[[i]],

 markerstotransf,

 determine_good_cells = "all",

 IT_limit=0.55,

 MAD=5,

 save_fcs = TRUE,

 plot=TRUE,

 output_directory = "PeacoQCresults")

}

> fcs_clean <- read.flowSet(path= "PeacoQCresults/fcs_file”,

 transformation=FALSE,

 truncate_max_range = FALSE)

After	choosing	the	right	parameters,	apply	to	all	samples	
	

Construct	new	flowSet	from	the	cleaned	fcs	files	

76

Automated	Quality	Control	with	flowClean	

https://www.bioconductor.org/packages/release/bioc/html/flowClean.html		

•  �Groups	cells	into	populations,	which	
are	tracked	over	the	acquisition	
period	

•  Changepoint	analysis:	detects	
significant	changes	in	frequencies	

•  Classifies	cells	(wether	collected	in	a	
“good”	or	“bad”	time	interval)	

77

Fletez-Brant	et	al.,	Cytometry	Part	A	(2016)	

Fletez-Brant	et	al.,	Cytometry	Part	A	(2016)	

Automated	Quality	Control	with	flowClean		

> fcs_list <- list()

> marker_indexes <- match(markerstotransf,colnames(fcs_transform))

> for(i in 1:16){

 fcs_list[[i]] <- clean(fF = fcs_transform[[i]] ,

 vectMarkers = marker_indexes)

 }

> names(fcs_list) <- sampleNames(fcs_transform)
		>		fcs_QC <- as(fcs_list, "flowSet")	

Construct	new	flowSet	

78

Run	flowClean	algorithm	

The	result	is	an	flowSet	identical	to	the	input	flowSet,	but	with	a	
new	parameter	’GoodVsBad’,	which	can	be	used	to	select	the	
quality	cells	(“good”	if	<	10000,	“bad”	otherwise)	

